首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphodynamics of deltas under the influence of humans   总被引:8,自引:0,他引:8  
A consistent database was established to characterize key environmental factors known to control delta morphology. The database includes the location, basin morphology, fluvial and sediment discharge to the deltas, delta morphology, ocean energy, and shelf depth reached by the sub-aqueous delta. Fifty-one deltas were selected to cover the global parameter range of rivers entering all major oceans and coastal seas. Seasonal satellite images of the deltas were processed (IKONOS, SPOT, LANDSAT, and MODIS). Predictive statistical relationships were obtained, suitable for hypothesis testing or to constrain/verify numerical models used to simulate the evolution of coastal systems. The area of a delta is best predicted from average discharge, the total sediment load feeding the delta, and the offshore accommodation space. The gradient of a delta plain, measured from the apex of the delta to the coast along the main channel, is best predicted with a ratio of sediment supply to sediment retention, sediment concentration used as a proxy of delta plain sedimentation, and mean water discharge. Widths of distributary channels form a lognormal distribution, with the cumulative width of the river mouths directly related to the maximum discharge, tidal and wave energy. The grain size of topset deposits scales with the river length. Hundreds of millions of people occupy deltas and human engineering is now a major influence on the growth and evolution of many deltas, through control of the flow path of distributary channels, and mitigation of the seasonal flood wave with concomitant change in the delivery of sediment load. More and more deltas are moving away from their pre-Anthropocene morphology, as influenced by pristine sediment supply and sediment dispersal.  相似文献   

2.
Values between 1.0 and 1.5 mm/yr, often quoted in the literature for the present-day rate of eustatic sea-level rise, have been obtained in many cases by averaging records of tide-gauge stations, after having omitted areas of glacio-isostatic or tectonic uplift, though including areas of subsidence. This approach results in an overestimation of the sea-level rise, which is increased by the fact that, for geological reasons and human-induced factors, subsidence is expected to occur more frequently than uplift in oceanic and coastal areas.In the absence of absolutely stable areas in the world, a new approach is proposed, which shows that on the Atlantic coasts of Europe, when land movements are removed, the sea-level rise during the last century has been only 4–6 cm, i.e. two to three times smaller than the estimation claimed by most authors. This value is consitent with current computations of the recent effects on sea level of the thermal expansion of the ocean water (2–5 cm) and of the melting of small glaciers (1.4–5 cm).Estimations of possible sea-level changes during the next century diverge with different authors, varying from a sea-level drop of 7 cm to a sea-level rise of over 3.5 m. There are some problems however with the assumptions made and some feedback phenomena have not yet been taken into account. In addition, the relationship between the atmospheric CO2 content, temperature and sea level is far from being demonstrated for the recent past.  相似文献   

3.
Late Cenozoic terrestrial deposits are widespread across the northern coastal regions of the Black Sea and the Sea of Azov and represent diverse fluvial, estuarine and deltaic environments. The dating and correlation of these deposits rely on stratigraphically-associated marine index beds, mammalian and molluscan faunas and magnetostratigraphy. In detail the geometries of these sediment bodies are extremely complex, typically varying between localities and representing many cycles of incision and aggradation. However, the overall disposition of the sediments reflects the transition from the uplifting sediment source region to the north and the subsiding depocentre in the interior of the Black Sea to the south. Since the Middle Miocene the area of the Paratethys/Black Sea depocentre has decreased significantly, but since the Middle Pliocene the hinge zone between uplift and subsidence has been located close to the modern coastline. A combination of regional and local differential crustal movements has given rise to the great variety of fluvial sediment bodies, to the erosion–aggradation cycles, different phases and river activity and to the various fluvial landforms that have all been important in landscape development in this region during the past 12 Ma. The fluvial erosion–accumulation cycles (during the upper Serravillian–Messinian, the Zanclean–late Gelasian, and the Pleistocene) and corresponding cycles of relief dissection and planation are reconstructed against a background of local sea-level changes and climatic variations determined from palaeobotanical data. The maximum fluvial incision occurred in the early Zanclean time with alluvial coastal plains, unique in this area, developing in the Gelasian. Increased climatic aridity during the Pleistocene caused a reduction of fluvial activity in comparison with the Late Miocene and Pliocene. The sea-level oscillations and Pleistocene glaciations affected fluvial processes in different ways. The most remarkable events were the substantial reduction of fluvial activity during the Messinian dessication in the Black Sea and drainage of the shelf, with intensive dissection, coeval with the Last Glaciation.  相似文献   

4.
A variety of sedimentary deposits is observed in Xanthe Terra, Mars, including Gilbert-type deltas, fan deltas dominated by resedimentation processes, and alluvial fans. Sediments were provided through deeply incised valleys, which were probably incised by both runoff and groundwater sapping. Mass balances based on High-Resolution Stereo Camera (HRSC) digital terrain models show that up to ~30% of the material that was eroded in the valleys is present as deltas or alluvial fan deposits. Stratigraphic relationships and crater counts indicate an age of ~4.0 to ~3.8 Ga for the fluvial activity. Hydrologic modeling indicates that the deposits were probably formed in geologically very short time scales. Our results point to episodes of a warmer and wetter climate on early Mars, followed by a long period of significantly reduced erosion rates.  相似文献   

5.
This paper addresses the influence of external forcing (changes in tectonics, sea level and climate) on the downstream and long-term (103–105 years) evolution of sediment composition along a fluvial longitudinal profile. The River Meuse served as a case study for a semi 2-D forward-modelling approach to simulate the downstream sediment transport in the 200- to 0-ka period. This has been related to bulk geochemical properties of the tributary catchments to quantify the bulk composition of the sediment load in the main river. The model was used to test the hypothesis that long-term fluvial dynamics influences sediment composition.The simulation exercise showed that long-term fluvial dynamics can yield systematic temporal changes in fluvial sediment composition, especially in high-relief areas. We tested a scenario of minimal discharges and maximum hillslope erosion during cold glacial periods (weathering-limited sediment supply), alternating with maximal discharges and minimal hillslope erosion during prolonged interstadials or interglacials (transport-limited sediment supply). This scenario largely reproduced the timing and direction of measured changes in the bulk and clay geochemistry of fine-grained sediments, which were deposited in the River Meuse lower reach from 13 to 0 ka. However, it failed to reproduce the measured amplitude of change, which was five to six times larger than the modelled amplitude. This suggests that climate-dependent changes in weathering intensity of rocks and saprolite in the source areas were more important and that aeolian inputs from outside the drainage basin have co-determined the sediment composition.  相似文献   

6.
Marine and fluvial terrace sequences near the Waitakere Ranges on the North Island of New Zealand have been surveyed, yielding an inventory of 13 fluvial and 12 marine terrace levels. Based on sparse tephra age control and correlation with the global palaeoclimatic record, rates of regional Quaternary uplift have been reconstructed. Between 1000 ka and 345 ka the time-averaged uplift rate was 0.072 mm a− 1, between 345 ka and 50 ka it increased to 0.278 mm a− 1, accelerating to 0.42 mm a− 1 since 50 ka. The fluvial terrace sequence did not yield clear sedimentary records or other datable material. However, although others have disputed the existence of marine terraces in this study region, a pattern of accelerating regional uplift, superimposed onto glacio-eustatic sea-level changes, is substantiated as the only possible mechanism for maintaining the considerable relief and the active denudation processes inland. The observed uplift is similar to that in other regions where the uplift has been attributed to coupling between surface processes and lower-crustal flow, making this a likely mechanism in the North Island of New Zealand. Regarding the fluvial terrace sequence, the proposed general model is of an actively incising river, carving out on average one strath terrace every ~ 16,000 years. The incision phases are reactivated by sea-level lowering and interrupted by net aggradation events due to landslides triggered by cyclones and/or fires within the catchment; volcanic ash falls also cause transient increases in sediment supply.  相似文献   

7.
The study is a detailed look on one of the several fluvial systems located on the eastern rim region of the Hellas basin on Mars. We analyzed the morphologic and morphometric characteristics of an extensive channel system, which extends for over 650 km from 35.8°S, 106.4°E in Hesperia Planum to Reull Vallis at 39.5°S, 98.1°E, and has a drainage area of 35,000–40,000 km2. During its traverse the channel changes its characteristics many times, indicating variations in the surface properties. Based on cross-cutting relations, the fluvial system post-dates the emplacement of the early Hesperian lava plains in Hesperia Planum but predates the Amazonian deposits. We describe the geomorphology and evolution of the system and provide evidence of both surface flow and groundwater sapping processes. A chain of channeled paleolake basins in the central parts of the system (38°S, 102°E) provides a rough estimate for the water volume (250–300 km3) which was required to form the system. The minimum volume of surface materials eroded by the channel system is ~74 km3. Although this study presents the detailed analysis of only one fluvial system, the presence of many similar channel systems along the margin of Hellas suggests that late-stage surface runoff has played a significant role in the degradation of the rim of the basin and also in the transportation of materials towards Hellas floor.  相似文献   

8.
Sedimentological, petrographic and geochronological (uranium series and amino acid racemization dating) study of middle Pleistocene deposits from the archipelagos of Bermuda and The Bahamas revealed the occurrence of marine terraces of possible stage 11 age at +2, +7 and over 20 m above mean sea level. Considering the tectonic stability of the investigated regions, these elevated deposits likely correspond to three discrete, higher than present sea levels during this time period, which is regarded by many as the warmest interglacial of the late Quaternary. It follows that warmer than present climatic conditions might profoundly modify water distribution between the cryosphere and the oceans. The punctuated nature of our stratigraphy further suggests that future deglaciation might not be a smooth process, but could be marked by rapid ice-sheet breakdown leading to abrupt, meter-scale sea-level rises. Given the long period of warm climate and stable sea level of the past few thousands of years and CO2 loading of the atmosphere, the probability of a rapid eustatic rise must be seriously considered.  相似文献   

9.
The morphology of fluvial valleys on Mars provides insight into surface and subsurface hydrology, as well as to Mars’ past climate. In this study, Naktong Vallis and its tributaries were examined from high-resolution stereoscopic camera (HRSC) images, thermal emission imaging system (THEMIS) daytime IR images, and mars orbiter laser altimeter (MOLA) data. Naktong Vallis is the southern part of a very large fluvial basin composed by Mamers, Scamander, and Naktong Vallis with a total length of 4700 km, and is one of the largest fluvial system on Mars. Naktong Vallis incised along its path a series of smooth intercrater plains. Naktong's main valley cut smooth plains during the Early Hesperian period, estimated ~3.6–3.7 Gyr, implying a young age for the valley when compared to usual Noachian-aged valley networks. Branching valleys located in degraded terrains south of the main Naktong valley have sources inside a large plateau located at more than 2000 m elevation. Connections between these valleys and Naktong Vallis have been erased by the superimposition of late intercrater plains of Early to Late Hesperian age, but it is likely that this plateau represents the main source of water. Small re-incisions of these late plains show that there was at least one local reactivation. In addition, valley heads are often amphitheatre-shaped. Despite the possibility of subsurface flows, the occurrence of many branching valleys upstream of Naktong's main valley indicate that runoff may have played an important role in Naktong Vallis network formation. The importance of erosional landforms in the Naktong Vallis network indicates that fluvial activity was important and not necessarily lower in the Early Hesperian epoch than during the Noachian period. The relationships between overland flows and sapping features suggest a strong link between the two processes, rather than a progressive shift from surface to subsurface flow.  相似文献   

10.
During the Holocene, the Dutch and Belgian coasts evolved, controlled by post-glacial eustatic sea-level rise, spatially varying vertical subsurface motions (glacio-isostatic crustal rebound, compaction, tectonics) and spatially varying sediment supply (mainly marine sand). The marine sand supply changed as the tidal dynamics and the wave climate changed due to the changing geometry and depth of the North Sea during the Holocene transgression. These changes influenced the coastal evolution. This study compares the results of separate numerical model calculations of the large-scale Holocene tide- and wave-induced sand transport in the southern North Sea with existing geological data of the Dutch and Belgian large-scale coastal evolution, resulting in a qualitatively good correlation. The large-scale coastal evolution is interpreted in terms of the oceanographical forcing, and an integrated conceptual model of the Holocene evolution of the Dutch and Belgian coasts is proposed. The large-scale wave-driven bed-load transport was an order of magnitude smaller than the tidal transports. The modelled tidal transport direction changed from onshore before 6 ka BP to along shore at present for the Zeeland and Holland coasts; the influence that waves may have had on the tidal transport by suspending sand gradually decreased. This change in direction caused the modelled tidal sand supply to the coast to decrease for the Belgian, Zeeland and Holland coasts. While the offshore area of the Holland coast remained a zone of (small) deposition due to decreasing northward sand transports, the offshore area of the Zeeland coast became increasingly erosional after 6 ka BP due to the encroaching divergence of the tidal transports. Due to uncertainty in the magnitude of the modelled sand transports, but robustness in the transport patterns, the focus is on the qualitative rather than the quantitative model results. When compared with the trend of closure, expansion and later erosion and reopening of the coast, the above decrease in sand supply must have been slow enough compared with the decrease in sea-level rise to cause a temporary sand surplus which decayed to a slight deficit as the decrease in supply and the rise in sea level continued. The Wadden Sea coast exchanged little or no sand with the adjacent deeper North Sea throughout the Holocene.  相似文献   

11.
In response to climatic warming, eustatic sea level has been predicted to rise by about 50 cm in the next century. While feedbacks between vegetation growth and sediment deposition tend to allow marshes to maintain their morphology under a constant rate of sea level rise, recent observations of marsh deterioration suggest that changes in the rate of sea level rise may induce loss of economically and ecologically important marshland. We have developed a three dimensional model of tidal marsh evolution that couples vegetation growth and sediment transport processes including bed accretion and wave erosion. We use the model to simulate the response of marshes and tidal flats along the Fraser River Delta, British Columbia to 100 yr forecasts of sea level change. Under low sea level-rise scenarios, the delta and its marshes prograde slightly, consistent with historical measurements. While accretionary processes greatly mediate the response to increased rates of sea level rise, vegetation zones transgress landward under median and high sea level rise rate scenarios. In these scenarios, low marsh erosion and constriction of high marsh vegetation against a dyke at its landward edge result in a 15–35% loss of marshland in the next century. Several important behavioral changes take place after 2050, suggesting that predictions based on field observations and short term model experiments may not adequately characterize (and sometimes underestimate) long-term change. In particular, the replacement of highly productive high marsh vegetation by less productive low marsh vegetation results in continued reduction of the system's total biomass productivity, even as the rate of loss of vegetated area begins to decline.  相似文献   

12.
Two major end-members of point-sourced submarine fans can be recognized: coarse-grained and fine-grained. The coarse-grained member is known from active margins where the sediment source is rather close to the coast. Once reaching the coast, most of the sediment goes into longshore transport and may move down a shelf depression to the slope. The movement of the sediment will gradually carve out a canyon. On the basin floor, a submarine fan is constructed that gradually progrades into the basin. Its thickness and sand/shale ratio decrease downdip.The fine-grained member is common for passive margins. It is a bypass system. The sediment originates far from the coast, the fluvial system is long and a major delta commonly results. Exposure of the wide shelf requires a relative lowering of sea level. Rapid aggradation of sediment near the shelfbreak results in high pore pressure that causes failure, followed by slumping and density flow transport. Deposition may commence at the base-of-slope. Leveed-channel transport is common on the mid-fan, while sheet-sand deposition takes place on the outer fan. Progradation of individual fan systems is rapid, followed by lateral switching to minimize bottom topography.Global and regional climatic changes cause variation in the growth/decay ratio of continental glaciers and in the type of fluvial effluent (hypopycnal and hyperpycnal outflows). Major global climate changes can cause ice ages, while smaller climate changes often influence transport and depositional variations. Shelf bypassing may result if hyperpycnal outflow conditions exist upon entering salt water. Although presently unknown, fine-grained submarine fans may provide data required to help analyze paleoclimate.  相似文献   

13.
Coral reefs are net sinks for C, principally as CaCO3 accretion. It is possible to predict quite accurately the rate of production, given adequate information about any particular reef environment. The best data set for an extensive region is that for the Great Barrier Reef (GBR). Careful analysis of this region and the incorporation of previously documented present day system calcification rates suggest net production (G) from G = 1 (kg CaCO3 m−2 yr−1) for fringing reefs, to G = 1.9 for planar (infiled platform) reefs, G = 3 for ribbon reefs and lagoonal reefs. The 20,055 km2 of reefs in the GBR are thus estimated to average G = 2.4, resulting in a total production of 50 million tonnes yr−1. In a 50–100 year Greenhouse scenario of rising sealevel, we predict that recolonisation of present day reef flats will be extensive and prolific. Production will increase substantially, and this could be by as much as 40% (ranging from 0% for deep shoals to 180% for fringing reefs) to give 70 million tonnes yr−1 if the rate of sealevel rise reaches or exceeds 6–8 mm yr−1We estimate 115,000 km2 of oceanic atolls worldwide. Drawing on points equivalence from the detailed analysis of the GBR, we estimate the atolls presently produce 160 million tonnes yr−1. We predict that a similar 40% increase could be possible in the next 100 years or so resulting in a production of 220 million tonnes.Accepting an existing estimate of 617,000 km2 for reefs worldwide, drawing from our projections from the GBR and the atolls, and making some assumptions about the remaining reef types (we suggest fringing reefs to dominate) we estimate global reef production at the present time to be 900 million tonnes yr−1. Within the next 100 years or so, we suggest this rate could almost double to 1800 million tonnes. In the long term (several centuries) we predict that the continuing trend of recolonisation, particularly of fringing and planar reefs could result in the production of > 3000 million tonnes yr−1 if rates of sealevel rise approaching or exceeding 6–8 mm yr−1 are achieved. Eventually (> 500 yr), reefs could actually “drown” due to inability to match the rate of sealevel increase if that rate significantly exceeds 6–8 mm yr−1.Thus, coral reefs at present act as a sink for 111 million tonnes C yr−1, the equivalent of 2% of present output of anthropogenic CO2. In the short term Greenhouse scenario (100 yr) we predict this could increase to the equivalent of 4% of the present CO2 output. In the much longer term (several centuries), if all trends continue, this could increase to the equivalent of as much as 9% of the present CO2 output.Unfortunately, we also predict that this considerable sink for C will be most likely of negative value in alleviating Greenhouse because of the immediate effect of CaCO3 precipitation is to raise the PCO2 of the surface oceans — ie, ot encourage CO2 efflux to the atmosphere. We do not attempt to quantify this effect.Other Greenhouse changes such as seawater temperature increase, changes in cloud cover, increased rainfall and runoff, increased storm activity, and changes in dissolved CO2 concentration and surface ocean circulation may complicate the reef response. However, we suggest that sealevel rise will be the dominant influence, at least during the next 100 years or so.  相似文献   

14.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

15.
Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits   总被引:1,自引:0,他引:1  
Ismenius Cavus is a basin where several fluvial valleys converge. Three depositional fan deltas are observed at the valleys outlets at similar elevations. These fans suggest long-term fluvial activity accompanied by a lake inside the basin. The elevational difference between the delta plains and the deepest part of the basin floor implies that this lake was 600 m deep. Iron-magnesium phyllosilicates, which are mapped from near-infrared spectral data, are associated with layered sediments >300 m thick at the base of one of the fans. Stratigraphic relationships with the surrounding plateau show that the valleys are hesperian in age (3.0-3.7 ga), thus dating the lake activity to this period. The coexistence of a deep lake and phyllosilicates demonstrates that persistent bodies of liquid water were present during the hesperian period.  相似文献   

16.
Recent studies suggest that anthropogenic modification of land hydrology (e.g. through groundwater mining, dam building, irrigation, deforestation, wetlands drainage, and urbanization) could significantly impact sea-level rise, although the magnitude and sign of this effect have been widely debated. This paper attempts a comprehensive overview of the effects of human activities on land hydrology. Estimates are provided for the volumes of water associated with each of the major anthropogenic processes and the corresponding equivalent in sea level.Groundwater mining; and runoff from paved and built-up areas are two major sources of water added to the ocean. In contrast, storage of water behind dams, losses through percolation, and evapotranspiration from irrigated fields withhold water that would otherwise flow to the sea. The net effect of these processes holds back the equivalent of 0.8 +- 0.4 mm/yr from sea-level rise. This is a magnitude comparable to, but in the opposite direction from the currently observed sea-level rise of 1–2 mm/yr. These estimates are still preliminary, awaiting better documentation. Coupling of improved land hydrology models with GCMs will help in analysis of feedbacks, especially the partitioning of water among runoff, infiltration, and evaporation.  相似文献   

17.
Monthly runoff from the 34.3% glacierized tropical catchment of Llanganuco in the tropical Cordillera Blanca, Perú, is successfully simulated and compared with a measured 44 year time series. In the investigation area, the climate is characterized by all-year round homogenous temperature conditions and a strong variability in air humidity and moisture content of the atmosphere. Thus, contrary to the mid latitudes, the seasonal variation in glacier melt strongly depends on moisture-related variables, rather than on air temperature. The here presented ITGG-2.0-R model aims for these requirements. The lack of moisture-related input data other than precipitation demands for an intermediate calibration step. Net shortwave radiation, the emissivity of the atmosphere and a sublimation/melt ratio are related to precipitation amounts. Runoff is well simulated and correlates with the measured record with r2 = 0.76. Seasonally obtained r2 are only slightly smaller. On a long-term, the cumulative deviation is minor, and the mean annual cycle of runoff is reproduced rather well (r2 = 0.99). Based on four different IPCC climate change scenarios, future runoff is simulated. All runoff scenarios are modelled for the respective steady-state glacier extent. This leads to a reduction in the glacier size and a decreased amount of glacier melt. On the other hand, direct runoff increases due to larger glacier free areas. Consequently, mean annual runoff remains almost unchanged, but the seasonality intensifies considerably with more runoff during the wet and less runoff during the dry season.  相似文献   

18.
To use basin stratigraphy for studying past climate change, it is important to understand the influence of evolving boundary conditions (river discharge and sediment flux, initial bathymetry, sea level, subsidence) and the complex interplay of the redistribution processes (plumes, turbidity currents, debris flows). To provide understanding of this complexity, we have employed source to sink numerical models to evaluate which process dominates the observed variability in a sedimentary record of two coastal Pacific basins, Knight Inlet in British Columbia and the Eel Margin of northern California.During the last glacial period, the Eel River supplied comparatively more sediment with a less variable flux to the ocean, while today the river is dominated by episodic events. Model results show this change in the variability of sediment flux to be as important to the deposit character as is the change in the volume of sediment supply. Due to the complex interaction of flooding events and ocean storm events, the more episodic flood deposits of recent times are less well preserved than the flood deposits associated with an ice-age climate.In Knight Inlet, the evolving boundary conditions (rapidly prograding coastline, secondary transport by gravity flows from sediment failures) are a strong influence on the sedimentary record. The delta and gravity flow deposits punctuate the sedimentary record formed by hemipelagic sedimentation from river plumes. Missing time intervals due to sediment failures can take away the advantage of the otherwise amplified lithologic record of discharge events, given the enclosed nature of the fjord basin.  相似文献   

19.
Growth patterns of the last ice age coral terraces at Huon Peninsula   总被引:1,自引:0,他引:1  
At Huon Peninsula, Papua New Guinea, prolific coral growth during the last-glacial was episodic and in response to a series of sea-level rises. The resultant step-like coral terraces are currently situated from 20 m up to 140 m above sea-level due to continuous tectonic uplift of the Peninsula. The sea-level rises were in response to periodic partial disintegration of Northern Hemisphere ice sheets associated with severe climate swings and occurred within decadal timescales. The relatively rapid 15 m to 35 m rise in sea-levels exposed new head-room for corals to colonize. The resulting terrace structures contain individual corals that do not appear to have grown sequentially in time and with elevation. Additionally, following the peak, sea level fell relatively slowly over several thousand years and corals grew and filled in the flanks of the terrace such that younger corals now occupy lower elevations. We have labeled these structures “pack-up” reefs. This is in contrast to coral terraces formed during major sea-level rises from glacial to interglacial or glacial to interstadial transitions where the rate of sea level rise is commensurate with coral growth rates and corals can keep up with sea-level rise by growing on top of each other in a time orderly sequence. Deriving sea-level information from pack-up terraces is difficult and is likely to be ambiguous. The periodic fluctuations in climate were associated with atmospheric radiocarbon swings that seem to have varied smoothly with time. The same corals that show a scatter in stratigraphic temporal ordering appear regularly distributed in time and with radiocarbon content attesting to the veracity of the age measurements and at the same time confirm the disordered distribution of corals in “pack-up” type reefs.  相似文献   

20.
Uzboi Vallis (centered at ∼28°S, 323°E) is ∼400 km long and comprises the southernmost segment of the northward-draining Uzboi-Ladon-Morava (ULM) meso-scale outflow system that emerges from Argyre basin. Bond and Holden craters blocked the valley to the south and north, respectively, forming a Late Noachian-to-Hesperian paleolake basin that exceeded 4000 km3. Limited CRISM data suggest lake deposits in Uzboi and underlying basin floor incorporate relatively more Mg-clays and more Fe-clays, respectively. The short-lived lake overflowed and breached Holden crater’s rim at an elevation of −350 m and rapidly drained into the crater. Fan deltas in Holden extend 25 km from the breach and incorporate meter-sized blocks, and longitudinal grooves along the Uzboi basin floor are hundreds of meters long and average 60 m wide, suggesting high-discharge drainage of the lake. Precipitation-derived runoff rather than regional groundwater or overflow from Argyre dominated contributions to the Uzboi lake, although the failure of most tributaries to respond to a lowering of base level indicates their incision largely ended when the lake drained. The Uzboi lake may have coincided with alluvial and/or lacustrine activity in Holden, Eberswalde, and other craters in southern Margaritifer Terra, where fluvial/lacustrine activity may have required widespread, synoptic precipitation (rain or snow), perhaps associated with an ephemeral, global hydrologic system during the Late Noachian into the Hesperian on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号