首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The East Asian subtropical westerly jet(EASWJ) is one of the most important factors modulating the Meiyu rainfall in the Yangtze-Huaihe River Basin, China. This article analyzed periods of the medium-term EASWJ variation,wave packet distribution and energy propagation of Rossby waves along the EASWJ during Meiyu season, and investigated their possible influence on abnormal Meiyu rain. The results showed that during the medium-term scale atmospheric dynamic process, the evolution of the EASWJ in Meiyu season was mainly characterized by the changes of3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves. The strong perturbation wave packet and energy propagation of the 3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves are mostly concentrated in the East Asian region of 90°-150°E, where the two wave trains of perturbation wave packets and wave-activity flux divergence coexist in zonal and meridional directions, and converge on the EASWJ. Besides, the wave trains of perturbation wave packet and wave-activity flux divergence in wet Meiyu years are more systematically westward than those in dry Meiyu years, and they are shown in the inverse phases between each other. In wet(dry) Meiyu year, the perturbation wave packet high-value area of the 10-15 d low-frequency variability is located between the Aral Sea and the Lake Balkhash(in the northeastern part of China), while over eastern China the wave-activity flux is convergent and strong(divergent and weak), and the high-level jets are strong and southward(weak and northward). Because of the coupling of high and low level atmosphere and high-level strong(weak) divergence on the south side of the jet over the Yangtze-Huaihe River Basin, the low-level southwest wind and vertically ascending motion are strengthened(weakened), which is(is not)conducive to precipitation increase in the Yangtze-Huaihe River Basin. These findings would help to better understand the impact mechanisms of the EASWJ activities on abnormal Meiyu from the perspective of medium-term scale Rossby wave energy propagation.  相似文献   

2.
A nonlinear steady-state baroclinic primitive-equation numerical model of atmospheric forced stationarywaves is used to investigate the tropics-extratropics interactions.Newtonian cooling,Rayleigh friction andbiharmonic horizontal diffusion are included in the model.The Eliassen-Palm (EP) cross-section and three-dimensional wave activity flux,which was derived by Plumb (1985) for linear quasi-geostrophic stationarywaves on a zonal flow,are used as diagnostics for the vertical and horizontal propagation of the waves.Results of the numerical experiments and diagnostics analyses suggest that the extratropical influenceon the tropical large-scale motion is important.The mid-latitude orographic forcing,especially of the Qing-hai-Xizang Plateau,and the extratropical thermal forcing make substantial contribution to the main-tenance of the cyclonic circulation over the eastern tropical and subtropical Pacific as well as the inversecirculation over the western Pacific in the upper troposphere.In addition,the longitudinal variation ofdiabatic heating in tropics has a significant influence on the wintertime stationary waves at higher latitudes.  相似文献   

3.
INTERACTION BETWEEN TROPICAL CYCLONE AND MEIYU FRONT   总被引:3,自引:0,他引:3  
Generally speaking,the convection activities are inactive over western Pacific warm pool andtropical cyclone(TC)activity seldom occurs over the offshore of East Asia during the period ofMeiyu rainfall.However,if a TC is active in this area,the Meiyu rainfall will often weaken or endup.Based on a statistical study with the data from 1980 to 1995,it is found that about 91% of 23TC activities affected the intensity of Meiyu rainfall,and 50% of the end-up of Meiyu events wererelated to the active TCs and the change of subtropical high.The present paper simulates the effectof TC on Meiyu circulation by using MM4 model,and the results agree with the observations.From the point of view of vapor and energy transport,the landing of TC cuts not only thetransport of the water vapor to Changjiang-Huaihe River basin from the Bay of Bengal but also theconversion of the mean flow energy to the Meiyu circulation because of the TC forcing to the zonalcirculation.These two effects make the convection and perturbation existing in Meiyu region lackthe supply of the vapor and energy for their maintenance and lead to the end of Meiyu rainfall.  相似文献   

4.
The activity of low frequency oscillation (LFO) widely exists in East Asia during the period of1991 excessively heavy rain over the Changjiang-Huaihe River Basin (Jianghuai).Both the rainfallamount of Jianghuai and the atmosphere from subtropical area to mid-high latitudes have thedominant period of 10—20 d,while the atmospheres in tropical area and high latitudes have thedominant period of 30—60 d.Compared with normal Meiyu season,the anomaly of the 1991 Meiyu process may be reflectedin the following two low frequency synoptic events:(a) The Meiyu process onsets extremely early(in the second dekad of May,which is nearly one month earlier than in normal Meiyu) and isimmediately followed by the first episode of heavy rain.(b) In the first dekad of July,there occursthe heaviest episode of rainfall of the whole Meiyu season,and it is even the heaviest rainfall forthe recent 30 years in China.For these two periods,corresponding to the adjustment of large-scalesituation from“double blocking high”to“bipolar blocking high”,the propagation direction of LFOin East Asia has a distinct seasonal variation,from eastward/northward propagation (passingthrough Jianghuai) during the first episode to westward/southward propagation during the thirdepisode.Oscillations of different frequency bands are superposed in phase.The LFO activity of thecold and warm/moist airs over Jianghuai can be strengthened through those LFO propagationprocesses in East Asia,although they may have different directions in three episodes.Particularly,the eastward (westward) propagation in low latitudes makes the southwest (southeast) airflowtransport intensively the low frequency warm/moist air to the south of Jianghuai from the IndianOcean (tropical West Pacific Ocean) in the first (third) episode.Such warm/moist airs meet andinteract with the cold air which vigorously invades Jianghuai persistently,and finally three episodesof heavy rain occur in mode of LFO.  相似文献   

5.
This study has reviewed recent studies about impact of the Rossby wave propagation on theweather of East Asia.Then,we have focused on the northward progression of the subtropical highaffected by the propagations and their interaction.The following results are obtained:(1)The twokinds of meridional Rossby wave propagations often affect the East Asian weather in summer,which propagate in two conflicting directions(northwest-southeastward and southwest-northeast-ward).This is considered as the interaction of the large-scale systems between high and lowlatitudes with wave propagation,especially to the circulation systems around East Asia.(2)Thenorthward progression of the subtropical high is largely restrained,aecompanied by the southwardshift of the convective activity in middle latitudes,under the strong and persistent Rossby wavepropagation from high to low latitudes.And the opposite role could be found in the Rossby wavepropagation from low to high latitudes.  相似文献   

6.
In the existing studies on the atmospheric energy cycle, the attention to the generation of available potential energy (APE) is restricted to its global mean value. The geographical distributions of the generation of APE and its mechanism of formation are investigated by using the three-dimensional NCEP/NCAR diabatic heating reanalysis in this study. The results show that the contributions from sensible heating and net radiation to the generation of zonal and time-mean APE (Gz) are mainly located in high and middle latitudes with an opposite sign, while the latent heating shows a dominant effect on Gz mainly in the tropics and high latitudes where the contributions from the middle and upper tropospheres are also contrary to that from the low troposphere. In high latitudes, the Gz is much stronger for the Winter Hemisphere than for the Summer Hemisphere, and this is consistent with the asymmetrical feature shown by the reservoir- of zonal and time-mean APE in two hemispheres, which suggests that the generation of APE plays a fundamental role in maintaining the APE in the global atmospheric energy cycle. The same contributions to the generation of stationary eddy APE (GSE) from the different regions related to the maintenance of longitudinal temperature contrast are likely arisen by different physics. Specifically, the positive contributions to GSE from the latent heating in the western tropical Pacific and from the sensible heating over land are dominated by the heating at warm regions, whereas those from the latent heating in the eastern tropical Pacific and from the sensitive heating over the oceans are dominated by the cooling at cold regions. Thus, our findings provide an observational estimate of the generation of eddy APE to identify the regional contributions in the climate simulations because it might be correct for the wrong reasons in the general circulation model (GCM). The largest positive contributions to the generation of transient eddy APE (GTE) are found to be at middle latitudes in the middle and upper tropospheres, where reside the strong local contributions to the baroclinic conversion from transient eddy APE to transient eddy kinetic energy and the resulting transient eddy kinetic energy.  相似文献   

7.
The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr (1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season (April to June), the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator (MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive (negative) anomalous precipitation over the whole or most of the province is phase 3 (phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity.  相似文献   

8.
The impact of solar activity on climate system is spatiotemporally selective and usually more significant on the regional scale. Using statistical methods and solar radio flux(SRF) data, this paper investigates the impact of the solar11-yr cycle on regional climate of Northeast Asia in recent decades. Significant differences in winter temperature,precipitation, and the atmospheric circulation over Northeast Asia are found between peak and valley solar activity years. In peak years, temperature is higher over vast areas of the Eurasian continent in middle and high latitudes, and prone to producing anomalous high pressure there. Northeast Asia is located to the south of the anomalous high pressure, where the easterlies prevail and transport moisture from the western Pacific Ocean to the inland of East Asia and intensify precipitation there. In valley years, temperature is lower over the Eurasian continent and northern Pacific Ocean in middle and high latitudes, and there maintain anomalous low pressure systems in the two regions. Over the Northeast Asian continent, north winds prevail, which transport cold and dry air mass from the high latitude to Northeast Asia and reduce precipitation there. The correlation coefficient of winter precipitation in Northeast China and SRF reaches 0.4, and is statistically significant at the 99% confidence level based on the Student's t-test. The latent heat flux anomalies over the Pacific Ocean caused by solar cycle could explain the spatial pattern of abnormal winter precipitation of China, suggesting that the solar activity may change the climate of Northeast Asia through air–sea interaction.  相似文献   

9.
Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb wave activity fluxes.The planetary wave propagation can clearly be seen in the longitude-height and latitude-height sections of the Plumb wave activity flux and EP flux,respectively,when the stratospheric basic state is partially reflective.Primarily,a wave packet emanating from Baffin Island/coast of Labrador propagated eastward,equatorward and was reflected over Central Eurasia and parts of China,which in turn triggered the advection of cold wind from the northern part of the boreal forest regions and Siberia to the subtropics.The wide region of Central Eurasia and China experienced extreme cold weather during the second ten days of January 2008,whereas the extraordinary persistence of the event might have occurred due to an anomalous blocking high in the Urals-Siberia region.  相似文献   

10.
The relationships between the precipitation over East Asia (20°-45°N,110°-135°E) and the 30-60-day intraseasonal oscillation (ISO) over the Pacific during the boreal summer are studied in the paper.The daily wind and height fields of NCEP/NCAR reanalysis data,the 24-h precipitation data of 687 stations in China during 1958-2000,and the pentad precipitation of CMAP/NOAA from 1979 to 2002 are all analyzed by the space-time filter method.The analysis results,from every drought and flood summer in four different regions of East Asia respectively during 1958-2000,have shown that the flood (drought) in the East Asian summer monsoon region is absolutely companied with the strongly (weakly) westward propagations of ISO from the central-east Pacific,and depends little on the intensity changes of the East Asian summer monsoon. And the westward ISO is usually the low-frequency cyclones and anticyclones from the Bay of Alaska in northeastern Pacific and the Okhotsk in the northwestern Pacific of mid-high latitudes,and the ISO evolving in subtropical easterlies.In mid-high latitudes the phenomena are related to the westward propagating mid- ocean trough and the retreat of blocking high.Therefore the westward propagating ISO from the central-east Pacific to East Asia is indispensable for more rainfall occurring in East Asia in summer,which results from the long-wave adjustment process in the mid-high latitudes and ISO evolving in tropical easterlies.  相似文献   

11.
In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.  相似文献   

12.
The interdecadal variations of tropical cyclones(TCs) and their precipitation over Guangdong Province are investigated using the observational data of TCs and precipitation from 26 observational stations in the province from 1951 to 2005.The results show that the TCs precipitation shows an oscillation with a peak value of about 25 years,with both the numbers of the Guangdong-influencing TCs and TCs formed in the western North Pacific oscillating with a peak value of about 23 years.The correlations are highly positive between the interdecadal variation of TC precipitation over the province and these numbers.The interdecadal variation of TC precipitation in the province shows significant negative correlations with the interdecadal variation of annual mean SST in some parts of the western North Pacific and the interdecadal variation of annual mean 500 hPa geopotential heights in some parts of the middle and high latitudes over the North Pacific.In general,there are high mean SSTs on the equator from central to eastern Pacific,low mean SSTs in the middle and high latitudes over the North Pacific and a main strong East Asian trough over the North Pacific in the period of less TC precipitation as compared with the period of more TC precipitation over the province.  相似文献   

13.
The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.  相似文献   

14.
The interdecadal variation of intensity of the western Pacific subtropical high(WPSH) during the period 1951-2001 is studied by using data from the National Climate Center(NCC),China Meteorological Administration.The characteristics of the circulations at 500 hPa and the surface heat flux over East Asia are also analyzed based on the NCEP/NCAR monthly reanalysis data.The results reveal that the WPSH and the circulations exhibit interdecadal variations around 1978,with enhancing intensities.The interseasonal persistence of the WPSH intensity alters correspondingly to some extent,which is more significant during 1978-2001 than during 1951-1978.The surface heat flux over East Asia also displays a remarkable interdecadal variation,which leads that of the WPSH intensity.The key variation areas of the surface sensible heat flux(SSHF) are mainly located over the eastern and western Tibetan Plateau around the late 1960s.However,the difference of the SSHF between the eastern and western Plateau exhibits a change in the mid 1970s,close to the time of the abrupt climate change of the WPSH intensity.The SSHF of the Plateau stably increases in the west and decreases in the east before the mid-late 1960s,while it stably increases in the east and decreases in the west after the mid-1970s.On the other hand,the key variation area of the surface latent heat flux(SLHF) is mainly situated over the West Pacific(WP),where the SLHF anomaly in spring changes from positive to negative in the south before 1978,but from negative to positive in the north after 1978;while in summer it turns from positive to negative all over the WP after 1978.The interdecadal variation of SLHF in both spring and summer corresponds well to the interdecadal variation of the WPSH intensity in the same season.The notable correlation between the WPSH intensity and SSHF(or SLHF) maintains without any change although each of these qnantities varies on the interdecadal scale.  相似文献   

15.
Diagnostic study on two intraseasonal progressive and retrogressive progress of anomalous subtropical high in western Pacific is carried out with the aid of daily 2.5°× 2.5° grid point data of ECMWF inJuly and August of 1980 and 1983. It is revealed that the anomalous progression and retrosression ofthis high is intraseasonally teleconnected with that in the eastern Pacific, shown as low-ftequency wavespropagating westward along a latitudinal wave train across the northern Pacific i the same oscillatory displacement of eastern subtropical high is again triggered off by the variation of convergent sink of uppertropospheric divergent wind field in eastern Pacific, being resulted from anomalous heating from monsoon area in South Asia through trade wind zone in the Pacific Ocean.  相似文献   

16.
The characteristics of the atmospheric boundary layer height over the global ocean were studied based on the Constellation Observation System of Meteorology, Ionosphere and Climate (COSMIC) refractivity data from 2007 to 2012. Results show that the height is much characteristic of seasonal, inter-annual and regional variation. Globally, the spatial distribution of the annual mean top height shows a symmetrical zonal structure, which is more zonal in the Southern Hemisphere than in the Northern Hemisphere. The boundary layer top is highest in the tropics and gradually decreases towards higher latitudes. The height is in a range of 3 to 3.5 km in the tropics, 2 to 2.5 km in the subtropical regions, and 1 to 1.5 km or even lower in middle and high latitudes. The diurnal variation of the top height is not obvious, with the height varying from tens to hundreds of meters. Furthermore, it is different from region to region, some regions have the maximum height during 9:00 to 12:00, others at 15:00 to 18:00.  相似文献   

17.
Using the intensity data of each northern subtropical high measured by monthly 500 hPa height charts for the recent 38 years (1954-1991), we calculate their correlations with the monthly sunspot number and monthly solar radio flux at 10.7 cm wave length, respectively. Through strict test, we further confirm a series of high correlations. Next, using a method called the non-integer (year) wave, the significant response of each subtropical high’s intensity to so-lar activity at its main period of 10.9-year length is found. Special attention is paid to that of the eastern Pacific high, the possible mechanism of such sensible response is also analysed.  相似文献   

18.
With the OLR data,the landfall and activity of tropical cyclones(TC) in southern China over a 20-year period(1975~1994) are studied.The result shows that the variation of the monthly anomalous OLR is somewhat teleconnected with the TC activity in southern China.The former is used to predict short-term climate for the latter over months with frequent or no TC influence.To some externt,the relationship between the TC activity in southern China and the monthly mean OLR anomalies is dependent on the climatological location of the subtropical high in northwestern Pacific region.  相似文献   

19.
By using a 2-layer AGCM designed by Institute of Atmospheric Physics,Chinese Academy ofSciences.this paper investigates influences of thickness and extent variations in Arctic sea ice onthe atmosphere circulation,particularly on climate variations in East Asia.The simulation resuhshave indicated that sea ice thickness variation in the Arctic exhibits significant influences onsimulation results,particularly on East Asian monsoon.A nearly reasonable distribution of sea icethickness in the model leads directly to stronger winter and summer monsoon over East Asia.andimproves the model's simulation results for Siberia high and Icelandic low in winter.On the otherhand,sea ice thickness variation can excite a teleconnection wave train across Asian Continent,andin low latitudes,the wave propagates from the western Pacific across the equator to the easternPacific.In addition,the variation of sea ice thickness also influences summer convective activitiesover the low latitudes including South China Sea and around the Philippines.Effects of winter sea ice extents in the Barents Sea on atmospheric circulation in the followingspring and summer are also significant.The simulation result shows that when winter sea iceextent in the target region is larger (smaller) than normal.(1)in the following spring (averagedfrom April to June).positive (negative) SLP anomalies occupy the northern central Pacific.whichleads directly to weakened (deepened)Aleutian low.and further favors the light (heavy) sea icecondition in the Bering Sea:(2)in the following summer,thermal depression in Asian Continent isdeepened (weakened).and the subtropical high in the northwestern Pacific shifts northward(southward) from its normal position and to be strengthened (weakened).  相似文献   

20.
1. IntroductionAs well known, Kuroshio is a famous and strongwest boundary current in the North Pacific. It trans-fers enormous energy from the low latitudes to themid-high latitudes and releases huge heat flux to theatmosphere above (Hsiung, 1985). The variation ofKuroshio exerts great influence on weather and cli-mate in East Asian.During 1950-60s, Lü (1950, 1964) found that thewestern North Pacific SSTA had a close relation withsummer rainfall in China. In the 1970s, evidencesshowed…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号