首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures.For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 Ω m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.  相似文献   

3.
In the central part of the Bolivian Altiplano, the shallow groundwater presents electrical conductivities ranging from 0·1 to 20 mS/cm. In order to study the origin of this salinity pattern, a good knowledge is required of the geometry of the aquifer at depth. In this study, geophysics has been used to complement the sparse data available from drill holes. One hundred time‐domain electromagnetic (TDEM) soundings were carried out over an area of 1750 km2. About 20 geological logs were available close to some of the TDEM soundings. Three intermediate results were obtained from the combined data: (i) the relationship between the electrical conductivity of the groundwater and the formation resistivity, (ii) geoelectrical cross‐sections and (iii) geoelectrical maps at various depths. The limited data set shows a relationship between resistivity and the nature of the rock. From the cross‐sections, a conductive substratum with a resistivity of less than 1 Ω·m was identified at most of the sites at depths ranging from 50 to 350 m. This substratum could be a clay‐rich formation containing brines. Using derived relationships, maps of the nature of the formation (sandy, intermediate and clayey sediments) were established at depths of 10 and 50 m. Discrimination between sand and clays was impossible where groundwater conductivity is high (>3 mS/cm). In the central part of the area, where the groundwater conductivity is low, sandy sediments are likely to be present from the surface to a depth of more than 200 m. Clayey sediments are more likely to be present in the south‐east and probably constitute a hydraulic barrier to groundwater flow. In conclusion, the study demonstrates the efficiency of the TDEM sounding method to map conductive zones. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Elastic behaviour of North Sea chalk: A well-log study   总被引:1,自引:1,他引:0  
We present two different elastic models for, respectively, cemented and uncemented North Sea chalk well‐log data. We find that low Biot coefficients correlate with anomalously low cementation factors from resistivity measurements at low porosity and we interpret this as an indication of cementation. In contrast, higher Biot coefficients and correspondingly higher cementation factors characterize uncemented chalk for the same (low) porosity. Accordingly, the Poisson's ratio–porosity relationship for cemented chalk is different from that of uncemented chalk. We have tested the application of the self‐consistent approximation, which here represents the unrelaxed scenario where the pore spaces of the rock are assumed to be isolated, and the Gassmann theory, which assumes that pore spaces are connected, as tools for predicting the effect of hydrocarbons from the elastic properties of brine‐saturated North Sea reservoir chalk. In the acoustic impedance–Poisson's ratio plane, we forecast variations in porosity and hydrocarbon saturation from their influence on the elastic behaviour of the chalk. The Gassmann model and the self‐consistent approximation give roughly similar predictions of the effect of fluid on acoustic impedance and Poisson's ratio, but we find that the high‐frequency self‐consistent approach gives a somewhat smaller predicted fluid‐saturation effect on Poisson's ratio than the low‐frequency Gassmann model. The Gassmann prediction for the near and potentially invaded zone corresponds more closely to logging data than the Gassmann prediction for the far, virgin zone. We thus conclude that the Gassmann approach predicts hydrocarbons accurately in chalk in the sonic‐frequency domain, but the fluid effects as recorded by the acoustic tool are significantly affected by invasion of mud filtrate. The amplitude‐versus‐angle (AVA) response for the general North Sea sequence of shale overlying chalk is predicted as a function of porosity and pore‐fill. The AVA response of both cemented and uncemented chalk generally shows a declining reflectivity coefficient versus offset and a decreasing normal‐incidence reflectivity with increasing porosity. However, for the uncemented model, a phase reversal will appear at a relatively lower porosity compared to the cemented model.  相似文献   

5.
The applied potential, or mise‐à‐la‐masse, method is used in mineral exploration and environmental applications to constrain the shape and extent of conductive anomalies. However, few simple calculations exist to help gain understanding and intuition regarding the pattern of measured electrical potential at the ground surface. While it makes intuitive sense that the conductor must come close to the ground surface in order for the lateral extent of the potential anomaly to be affected by the dimensions of the conductor rather than simply by the depth, no simple calculation exists to quantify this effect. In this contribution, a simple method of images solution for the case of a sphere of constant electrical potential in a conducting half‐space is presented. The solution consists of an infinite series where the first term is the same as the method of images solution for a point current source in an infinite half‐space. The higher order terms result from the interaction of the constant potential sphere with the no‐flux boundary condition representing the ground surface and cause the change in the shape of the potential anomaly that is of interest in the applied potential method. The calculation is relevant to applied potentials when the conductive anomaly is limited in all three space dimensions and is highly conductive. Using the derived formula, it is shown that, while the electrical potential at the ground surface caused by the sphere is affected even when the sphere is quite deep, the ratio of the potential to the current, a quantity that is more relevant to the applied potential method, is not affected until the centre of the sphere is within two radii of the ground surface. An expression for the contact resistance of the sphere as a function of depth is also given, and the contact resistance is shown to increase by roughly 45% as the sphere is moved from great depth to the ground surface.  相似文献   

6.
Extending electromagnetic methods to map coastal pore water salinities   总被引:1,自引:0,他引:1  
The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems.  相似文献   

7.
Improvements in the joint inversion of seismic and marine controlled source electromagnetic data sets will require better constrained models of the joint elastic‐electrical properties of reservoir rocks. Various effective medium models were compared to a novel laboratory data set of elastic velocity and electrical resistivity (obtained on 67 reservoir sandstone samples saturated with 35 g/l brine at a differential pressure of 8 MPa) with mixed results. Hence, we developed a new three‐phase effective medium model for sandstones with pore‐filling clay minerals based on the combined self‐consistent approximation and differential effective medium model. We found that using a critical porosity of 0.5 and an aspect ratio of 1 for all three components, the proposed model gave accurate model predictions of the observed magnitudes of P‐wave velocity and electrical resistivity and of the divergent trends of clean and clay‐rich sandstones at higher porosities. Using only a few well‐constrained input parameters, the new model offers a practical way to predict in situ porosity and clay content in brine saturated sandstones from co‐located P‐wave velocity and electrical resistivity data sets.  相似文献   

8.
In tectonically active regions electrical conductivity anisotropies are the dominating features. The importance of conductivity anisotropy in the interpretation of magnetotelluric data is well known. In the present study numerical results presented which show the effect of a substratum with inclined anisotropy on the magnetotelluric response. The pronounced change on the magnetotelluric response is found for the models in which the substratum underlies (i) conductive and (ii) resistive overburden.  相似文献   

9.
Electromagnetic (EM) logging provides an efficient method for high-resolution, vertical delineation of electrically conductive contamination in glacial sand-and-gravel aquifers. LM. gamma, and lithologic logs and specific conductance data from sand-and-gravel aquifers at five sites in the northeastern United States were analyzed to define the relation of KM conductivity to aquifer lithology and water quality. Municipal waste disposal, septic waste discharge, or highway deicing salt application at these sites has caused contaminant plumes in which the dissolved solids concentration and specific conductance of ground water exceed background levels by as much as 10 to 20 limes.
The major hydrogeologic factors that affected KM log response at the five sites were the dissolved solids concentration of the ground water and the silt and clay content in the aquifer. KM conductivity of sand and gravel with uncontaminated water ranged from less than 5 to about 10 millisiemens per meter (mS/m); that of silt and clay zones ranged from about 15 to 45 mS/m: and that of the more highly contaminated zones in sand and gravel ranged from about 10 to more than 80 mS/m. Specific conductance of water samples from screened intervals in sand and gravel at selected monitoring well installations was significantly correlated with KM conductivity.
CM logging can be used in glacial sand-and-gravel aquifer investigations to (1) determine optimum depths for the placement of monitoring well screens: (2) provide a nearly continuous vertical profile of specific conductance to complement depth-specific water quality samples; and (3) identify temporal changes in water quality through sequential logging. Detailed lithologic or gamma logs, preferably both, need to be collected along with the F.M logs to define zones in which elevated EM conductivity is caused by the presence of sill and clay beds rather than contamination.  相似文献   

10.
In order to evaluate the risk associated by an earthflow to abruptly evolve into a torrential flow, the knowledge of its internal structure is necessary. Geotechnical methods are important to reach this goal. However, because of the rough topography associated with earthflows, their surface heterogeneities, and the spatial variations of the thickness of the potentially moving mass, non-intrusive geophysical methods offer a very useful tool that complements traditional geotechnical methods. We report the results of a comprehensive study covering a 150 m by 200 m area of the Super Sauze earthflow. This earthflow developed in black marls in the southern French Alps. Shallow electrical conductivity investigations, derived using low frequency domain electromagnetics, maps hidden gullies and crests and lateral variations of the clay and the water content within the first 5 m below the ground surface. Electrical resistivity tomography allows to extrapolate this information down to 10 m below the ground surface along selected transects. The vertical structure of the earthflow, down to the substratum, is defined precisely thanks to joint inversion of DC and TDEM vertical soundings along one profile: the flowing upper layer and the position of the substratum are clearly evidenced. Combining this geophysical datasets with geotechnical tests and drill holes, we provide an estimate of both the location and the volume of the potentially most dangerous areas of the earthflow.  相似文献   

11.
We investigate a novel way to introduce resistivity models deriving from airborne electromagnetic surveys into regional geological modelling. Standard geometrical geological modelling can be strengthened using geophysical data. Here, we propose to extract information contained in a resistivity model in the form of local slopes that constrain the modelling of geological interfaces. The proposed method is illustrated on an airborne electromagnetic survey conducted in the region of Courtenay in France. First, a resistivity contrast corresponding to the clay/chalk interface was interpreted confronting the electromagnetic soundings to boreholes. Slopes were then sampled on this geophysical model and jointly interpolated with the clay/chalk interface documented in boreholes using an implicit 3D potential‐field method. In order to evaluate this new joint geophysical–geological model, its accuracy was compared with that of both pure geological and pure geophysical models for various borehole configurations. The proposed joint modelling yields the most accurate clay/chalk interface whatever the number and location of boreholes taken into account for modelling and validation. Compared with standard geological modelling, the approach introduces in between boreholes geometrical information derived from geophysical results. Compared with conventional resistivity interpretation of the geophysical model, it reduces drift effects and honours the boreholes. The method therefore improves what is commonly obtained with geological or geophysical data separately, making it very attractive for robust 3D geological modelling of the subsurface.  相似文献   

12.
The alternating electromagnetic(EM) field is one of the most sensitive physical fields related to earthquakes. There have been a number of publications reporting EM anomalies associated with earthquakes. With increasing applications and research of artificial-source extremely low frequency EM and satellite EM technologies in earthquake studies, the amount of observed data from the alternating EM method increases rapidly and exponentially, so it is imperative to develop suitable and effective methods for processing and analyzing the influx of big data. This paper presents research on the self-adaptive filter and wavelet techniques and their applications to analyzing EM data obtained from ground measurements and satellite observations, respectively. Analysis results show that the self-adaptive filter method can identify both natural- and artificial-source EM signals, and enhance the ratio between signal and noise of EM field spectra, apparent resistivity, and others. The wavelet analysis is capable of detecting possible correlation between EM anomalies and seismic events. These techniques are effective in processing and analyzing massive data obtained from EM observations.  相似文献   

13.
Electromagnetic fields in a non-uniform steel-cased borehole   总被引:1,自引:0,他引:1  
Since most oil wells are cased in steel, electromagnetic (EM) signals undergo severe attenuation as they diffuse across the casing. This paper examines an effect of non‐uniform casing properties on EM fields measured in a steel‐cased well embedded in a layered formation. We use a finite‐element method for computing secondary azimuthal electric fields in a cylindrically symmetric model, and analytically obtain primary fields for a homogeneous casing in a homogeneous whole space. Although steel casing largely masks EM signals induced into a layered formation, the induced signal is more pronounced in phase than in amplitude. The effect of casing non‐uniformity is quite large in measured fields but is highly localized. When electrical conductivity varies rapidly in the casing wall, the resulting EM fields also vary rapidly. A cross‐correlation function of these variations has strong peaks at two points, the interval between them being equal to the source–receiver distance. The high‐frequency coherent noise event caused by the non‐uniform casing can be greatly suppressed by low‐pass filtering to enhance EM signals indicating formation conductivity.  相似文献   

14.
Resistivity and self‐potential tomography can be used to investigate anomalous seepage inside heterogeneous earthen dams. The self‐potential (SP) signals provide a unique signature to groundwater flow because the source current density responsible for the SP signals is proportional to the Darcy velocity. The distribution of the SP signals is also influenced by the distribution of the resistivity; therefore, resistivity and SP need to be used in concert to elucidate groundwater flow pathways. In this study, a survey is conducted at a small earthen dam in Colorado where anomalous seepage is observed on the downstream face at the dam toe. The data reveal SP and direct current resistivity anomalies that are used to delineate three anomalous seepage zones within the dam and to estimate the source of the localized seepage discharge. The SP data are inverted in two dimensions using the resistivity distribution to determine the distribution of the Darcy velocity responsible for the observed seepage. The inverted Darcy velocity agrees with an estimation of the Darcy velocity from the hydraulic conductivity obtained from a slug test and the observed head gradient.  相似文献   

15.
In impure chalk, the elastic moduli are not only controlled by porosity but also by contact‐cementation, resulting in relatively large moduli for a given porosity, and by admixtures of clay and fine silica, which results in relatively small moduli for a given porosity. Based on a concept of solids suspended in pore fluids as well as composing the rock frame, we model P‐wave and S‐wave moduli of dry and wet plug samples by an effective‐medium Hashin–Shtrikman model, using chemical, mineralogical and textural input. For a given porosity, the elastic moduli correspond to a part of the solid (the iso‐frame value) forming the frame of an Upper Hashin–Shtrikman bound, whereas the remaining solid is modelled as suspended in the pore fluid. The iso‐frame model is thus a measure of the pore‐stiffness or degree of cementation of the chalk. The textural and mineralogical data may be assessed from logging data on spectral gamma radiation, density, sonic velocity and water saturation in a hydrocarbon zone, whereas the iso‐frame value of a chalk may be assessed from the density and acoustic P‐wave logs alone. The iso‐frame concept may thus be directly used in conventional log‐analysis and is a way of incorporating sonic‐logging data. The Rigs‐1 and Rigs‐2 wells in the South Arne field penetrate the chalk at the same depth but differ in porosity and in water saturation although almost the entire chalk interval has irreducible water saturation. Our model, combined with petrographic data, indicates that the difference in porosity is caused by a higher degree of pore‐filling cementation in Rigs‐1. Petrographic data indicate that the difference in water saturation is caused by a higher content of smectite in the pores of Rigs‐1. In both wells, we find submicron‐size diagenetic quartz.  相似文献   

16.
Complementary geophysical surveys on large landslides help revealgeologic structures and processes, and thus can help devise mitigation strategies. The combined interpretation of these methods enhance the result of each data set interpretation and makes it possible to derive a geological model of the landslide.We chose a test site on the Boup landslide (Wallis, western SwissAlps) to test high-resolution seismic reflection surveyscombined with ground penetratingradar (GPR), electromagnetic (EM) and electrokinetic spontaneous potential (SP) measurements.The results of the high-resolution seismic surveys suggest thatthe sliding is within a gypsum layer at 50 m depth and not as previously believed along a deeper (70 m) gypsum-shale boundary, also mapped seismically. Inversion of electromagnetic profiles (EM-34) with constraints from seismic data provided a model cross-section of conductivity values of the landslide (20–25 mS/m) and of the surrounding stable ground (10–15 mS/m), and it helped outline their boundary at depth.The accurate surface location of the landslide limit could be detected withelectromagnetic measurements of shallower depths of investigation (EM-31). Positive PS anomalies revealed an upward flow of mineralised water interpreted to follow the lateral boundary of the Boup landslide on its east side. Limited success was obtained withGPR profiling. This method can be hampered by conductive shallow layers, and itssuccessful application on landslides is expected to be strongly site dependant.  相似文献   

17.
Fine-scale hydrostratigraphic features often play a critical role in controlling ground water flow and contaminant transport. Unfortunately, many conventional drilling- and geophysics-based approaches are rarely capable of describing these features at the level of detail needed for contaminant predictions and remediation designs. Previous work has shown that direct-push electrical conductivity (EC) logging can provide information about site hydrostratigraphy at a scale of relevance for contaminant transport investigations in many unconsolidated settings. In this study, we evaluate the resolution and quality of that information at a well-studied research site that is underlain by highly stratified alluvial sediments. Geologic and hydrologic data, conventional geophysical logs, and particle-size analyses are used to demonstrate the capability of direct-push EC logging for the delineation of fine-scale hydrostratigraphic features in saturated unconsolidated formations. When variations in pore-fluid chemistry are small, the electrical conductivity of saturated media is primarily a function of clay content, and hydrostratigraphic features can be described at a level of detail (<2.5 cm in thickness) that has not previously been possible in the absence of continuous cores. Series of direct-push EC logs can be used to map the lateral continuity of layers with non-negligible clay content and to develop important new insights into flow and transport at a site. However, in sand and gravel intervals with negligible clay, EC logging provides little information about hydrostratigraphic features. As with all electrical logging methods, some site-specific information about the relative importance of fluid and sediment contributions to electrical conductivity is needed. Ongoing research is directed at developing direct-push methods that allow EC logging, water sampling, and hydraulic testing to be done concurrently.  相似文献   

18.
The groundwater in shallow loess aquifers in high mountain–hills in the western Loess Plateau in China is almost the sole water resource for local residents. However, the question about how the loess groundwater naturally circulates in these high mountain–hills, characterized by low precipitation and high potential evaporation, remains unclear. The objectives of this study are to evaluate the application of hydrogen and oxygen isotopes to (1) examine temporal variations of the isotopic composition of precipitation and shallow groundwater and (2) uncover the mechanism of groundwater recharge in high mountain–hills. Results from 2 years of monitoring data show a difference in the stable isotopes for groundwater and local precipitation between the winter and summer periods. Similar to precipitation, stable isotopes in groundwater are observed to be depleted in winter and enriched in summer, particularly in oxygen isotope. A prominent characteristic is that H and O isotopes of groundwater show a very clear response to strong precipitation in the rainy season in 2013. The results highlight that local precipitation is the likely recharge source for groundwater in shallow loess aquifers. Annual recharge from local precipitation maintains the groundwater resource in the shallower loess aquifer. The mechanisms governing shallow loess groundwater recharge in high mountain–hills were evaluated. In addition to possible vertical slow percolation of soil water through the unsaturated zone, rapid groundwater recharge mechanisms have been identified as temporal preferential infiltration through sinkholes, slip surface or landslide surface and through the interface of loess layer and palaeo‐soils. Most groundwater can be recharged after a heavy rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
基于Tikhonov正则化的双频电磁波电导率成像反演   总被引:4,自引:1,他引:3       下载免费PDF全文
本文将Tikhonov正则化方法与active-set算法相结合,利用双频电磁波电导率成像原理,求解其反演成像方程.不仅对现有算法进行了改进,也促进了算法的实际应用.本文研究了在双频电磁波电导率成像方程建立后,如何根据其严重病态性质,选择合适的算法求解矩阵成像方程.针对电导率非负的特性,引入正则化参数,将问题转化为一个非负最小二乘问题,并用active-set算法求解.采用改进后的迭代算法对理论模型进行了数值模拟计算,验证了该方法的有效性.应用到实际电导率成像反演,与常规的LSQR、SP-LSQR、Tikhonov正则化等算法进行比较,取得了满意的结果.  相似文献   

20.
Electrical conductivity of alluvial sediments depends on litho‐textural properties, fluid saturation and porewater conductivity. Therefore, for hydrostratigraphic applications of direct current resistivity methods in porous sedimentary aquifers, it can be useful to characterize the prevailing mechanisms of electrical conduction (electrolytic or shale conduction) according to the litho‐textural properties and to the porewater characteristics. An experimental device and a measurement protocol were developed and applied to collect data on eight samples of alluvial sediments from the Po plain (Northern Italy), characterized by different grain‐size distribution, and fully saturated with porewater of variable conductivity. The bulk electrical conductivities obtained with the laboratory tests were interpreted with a classical two‐component model, which requires the identification of the intrinsic conductivity of clay particles and the effective porosity for each sample, and with a three‐component model. The latter is based on the two endmember mechanisms, surface and electrolytic conduction, but takes into account also the interaction between dissolved ions in the pores and the fluid‐grain interface. The experimental data and their interpretation with the phenomenological models show that the volumetric ratio between coarse and fine grains is a simple but effective parameter to determine the electrical behaviour of clastic hydrofacies at the scale of the representative elementary volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号