首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
应用分水岭变换与支持向量机的极化SAR图像分类   总被引:1,自引:0,他引:1  
结合分水岭变换与支持向量机的特性,提出一种新的极化SAR图像分类算法。其基本思想是先通过分水岭变换及区域合并处理,将极化SAR图像分割成一系列同质区;再以同质区为基本单元,进行特征提取及样本选择后采用支持向量机分类。实验结果表明,该算法可有效降低相干斑对分类的影响,与传统基于像素的SVM算法相比,其分类精度有显著的提高,且结果也更易于理解。  相似文献   

2.
根据侧扫声纳影像的特征,提出一种基于SVM和GLCM的侧扫声纳影像分类方法,利用灰度共生矩阵提取其纹理特征,采用主成分分析法对纹理特征进行筛选,选择适合侧扫声纳影像的最佳纹理特征,结合侧扫声纳影像的回波强度,应用支持向量机对侧扫声纳影像进行分类。研究结果表明,纹理特征结合回波强度的支持向量机分类精度高于只依靠回波强度的支持向量机分类精度。  相似文献   

3.
针对应用单特征SAR图像进行目标识别准确率低的问题,提出了一种将支持向量机(support vector machine,SVM)和D-S证据理论(Dempster-Shafer,D-S)相结合的多特征融合SAR图像目标识别方法.该方法在对SAR图像预处理的基础上,提取目标的纹理、Hu不变矩和峰值特征,并分别以这3类单特征的SVM分类结果作为独立证据,构造基本概率指派,通过D-S证据的组合规则进行融合,并根据分类判决门限给出最终的目标识别结果.将该方法用于SAR图像上的3类目标识别,识别率达95.5%,表明该方法是一种有效的SAR图像目标识别方法.  相似文献   

4.
基于支持向量机的特定目标检测方法   总被引:1,自引:1,他引:1  
提出了运用支持向量机进行目标检测的方法。通过对航空影像中的军事目标和自然背景两类样本进行学习,支持向量机检测方法建立了针对目标和非目标有效区分的识别模型,该模型能够对航空影像中所有的区域进行快速的检测和识别,检测到所有感兴趣的人造军事目标。试验表明,该方法快速、高效且具备一定的鲁棒性。  相似文献   

5.
巫兆聪  欧阳群东  李芳芳 《测绘科学》2013,38(3):115-117,139
以支持向量数和相关性分析为评估依据,结合序列前进搜寻策略,本文提出一种顾及特征优化的改进SVM分类方法,并将其应用于全极化SAR图像监督分类。真实数据的实验结果表明,该方法不仅具有小样本情况下的良好泛化性能,而且能以更少的特征个数,在更广泛的SVM参数取值范围内获得更高的分类精度。  相似文献   

6.
将图像域规则划分与模糊聚类方法结合,提出了一种区域化模糊聚类算法,并将该算法用于合成孔径雷达(Synthetic Aperture Radar,SAR)图像分割,以解决分割过程中像素模糊聚类难以处理SAR图像中存在的大量固有斑点噪声问题。首先,利用规则划分技术将图像域划分成大小相等的规则子块;假设每一子块内像素对聚类的隶属度相同,并以此为基础定义区域模糊聚类目标函数;通过迭代最小化上述目标函数实现SAR图像初步分割;最后,采用中值滤波方法进行后处理操作,以消除规则划分对不同类别之间边界的影响,实现SAR图像精准分割。为了验证提出算法的有效性,用模拟及真实SAR图像实现了算法测试;对算法分割结果进行定性与定量评价。结果表明算法的分割精度较高,可以有效降低SAR图像中斑点噪声对分割结果的影响。  相似文献   

7.
航空影像分割的最小二乘支持向量机方法   总被引:5,自引:0,他引:5  
将最小支持向量机LS-SVM用于航空影像的分割,讨论了不同核函数对分割结果的影响和稀疏化处理对决策函数的影响。试验表明了LS-SVM方法用于航空影像分割的可行性。  相似文献   

8.
提出改进分块阈值的SAR图像分割算法,该算法不但能够充分利用图像的局部细节信息,而且利用子图像块上边和左边子图像块的统计特征,增加子图像块间的连续性限制条件。通过试验对比,证明本文提出的算法能够得到更好的分割效果。  相似文献   

9.
在基于SAR图像的海上溢油检测中,识别的效率与准确率是关键。纹理特征是人类专家能够较好的判别SAR图像中油膜,类油膜以及海水的一个重要依据。本文算法一方面融合灰度共生矩阵与Tamura特征,直接对SAR原始图像进行特征提取,避免了对图像进行分割、降噪等预处理,提高了识别算法的可行性与识别效率。另一方面,应用深度信念网络(DBN)的分类方法,可以很好地解决溢油检测中小样本分类的问题,并且模仿人类感知系统高效准确的表示信息、获取本质特征。本文应用人类感知的思想对油膜、类油膜以及海水这3类样本进行分类识别。通过实验确定了DBN中利于分类的关键参数值。本算法对原始SAR图像中3类样本的识别准确率达到90.36%,具有较好的实用价值。  相似文献   

10.
11.
基于支持向量机的航空影像纹理分类研究   总被引:8,自引:0,他引:8  
提出一种用SVM解决航空影像纹理分类的方法。在利用一些常用的纹理特征的基础上,将SVM用于航空影像纹理分类,有效地解决了特征选择难和高维数问题。试验表明,这种方法可以取得较好的结果。  相似文献   

12.
合成孔径雷达(SAR)影像具有明显的斑点噪声,在变化检测中,一般需要考虑空间邻域信息。本文结合SAR影像丰富的纹理信息,提出一种考虑空间邻域信息的高分辨率SAR影像非监督变化检测方法,用基于灰度共生矩阵(GLCM)的32维纹理特征向量构造差异影像。通过最大化熵法自动选取阈值,对精度指标随窗口大小的变化进行回归分析,得到适合于变化检测的窗口为11×11。试验表明,本文方法优于马尔科夫随机场法,可以减小斑点噪声的影响,有效提高高分辨率SAR影像变化检测的精度。  相似文献   

13.
支持向量机分类方法存在惩罚系数需要交叉验证获取、训练时间较长、支持向量个数随着训练样本数量的变化而变化,以及稳定性和稀疏性较差等问题。针对这些问题,提出了一种基于输入向量机的高光谱影像分类算法。该算法在核逻辑回归模型的基础上,采用前向贪心算法选择训练样本中的输入向量来进行模型的训练,达到稀疏的目的,提高影像的分类精度和分类效率。通过PHI和OMIS两组高光谱影像分类实验,结果表明基于输入向量机分类算法具有稳定性好、稀疏性强的优点。  相似文献   

14.
提出了一种结合规则划分和M-H(Metropolis-Hastings)算法的SAR图像分割方法。首先,利用规则划分将图像域划分成子块,并假设每个子块内像素服从同一独立的Gamma分布;根据贝叶斯定理,构建基于子块的图像分割模型;然后,利用M-H算法模拟该分割模型,实现SAR图像分割及模型参数估计。在M-H算法中,设计了改变参数矢量、改变标号场及分裂或合并子块三个移动操作。为了验证提出的分割方法,分别对真实及模拟SAR图像进行分割实验。定性及定量评价结果表明了本文方法的可行性及有效性。  相似文献   

15.
最小二乘支持向量机(LSSVM)是针对标准支持向量机(SVM)算法训练时间长的问题而提出的一种改进算法。针对SVM算法在极化SAR影像分类时存在效率较低的问题,以目标分解理论为基础,对LSSVM算法应用于极化SAR影像分类的有效性进行了研究。结果表明,对于极化SAR影像分类,LSSVM算法与SVM算法的分类精度相当,但时间效率远优于SVM算法,并且对参数的调整也具有更好的稳定性,同时泛化能力良好。  相似文献   

16.
基于支持向量机的遥感影像厚云及云阴影去除   总被引:1,自引:1,他引:1  
梁栋  孔颉  胡根生  黄林生 《测绘学报》2012,41(2):225-231,238
提出一种基于支持向量机的遥感影像厚云及云阴影去除方法。首先利用支持向量机的学习性能检测影像中的云层,并利用太阳角度信息,判定云阴影区域,得到云层和云阴影的二值图。再对影像进行支持向量值轮廓波变换,利用云层和云阴影二值图生成的选择矩阵,对变换系数进行多层镶嵌,完成云层及云阴影的初去除。最后对影像镶嵌未能去除的云层及云阴影,通过统计学补偿的方法进行修复。仿真试验表明,该方法能有效恢复厚云区域的地物信息,形成的无云图像细节清晰,图像光滑。  相似文献   

17.
基于交互式分割技术和决策级融合的SAR图像变化检测   总被引:1,自引:0,他引:1  
为免去降斑预处理及克服选择分布模型的限制,结合差异图的特点和一种不涉及分布模型的交互式分割方法,产生不同"种子点"下的变化检测结果后,再利用投票策略进行决策级融合给出最终的变化检测结果。分割中,将每个像素的特征设置为由差异图及静态小波变换分解差异图再丢弃高频系数后重构得到的各层表示内,对应位置上的灰度值构成的矢量。此特征及决策级融合的策略使本文变化检测技术对SAR图像中的斑点噪声具有一定的抗差性。在无需对SAR图像做预处理的情况下,对真实SAR图像数据集的变化检测结果证实了方法的有效性。  相似文献   

18.
当代摄影测量与遥感技术的迅速发展,已经步入大数据时代,如何对获得的海量数字影像的辐射质量进行评价是一个值得重视的问题。本文从信息量、清晰度、灰度分布3个方面选择了10个评价指标作为影像特征,利用支持向量机监督学习的方法对以资源三号为例的遥感影像的辐射质量进行评价及结果分析。试验结果表明,本文方法得到的评价结果与人工评价结果较为一致,准确度较高,并且自动化程度高,可应用于遥感影像的辐射质量评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号