首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digital spectrograms have been computed for 18 days of geomagnetic pulsation activity at three UK Earth current stations (L = 2.6?3.6).Three main conclusions are drawn: (1) There are days when the period of the dominant spectral amplitude is ordered according to the observatory latitude. The most frequently observed large amplitude spectral peaks are centred on 80, 60 and 45s for South Uist (L = 3.6), Eskdalemuir (L = 3.1) and East Anglia (L = 2.6). respectively. (2) There are other days when the period of the dominant spectral amplitude is the same at all the observatories. (3) When Pc 3 and 4 period waves have been detected together, the latitude dependence of the amplitudes supports the theory that the shorter period pulsation is enhanced in the plasmatrough while the longer period wave is enhanced within the plasmasphere.  相似文献   

2.
We present results from the analysis of magnetometer measurements of one of the clearest observations of a double resonance Pc4 pulsation to date. The Pc4, with a period of 55 s, was measured by 18 ground magnetometers and also on board the ATS-6 satellite at geostationary orbit. Using a subsequent observation of a second harmonic guided poloidal mode pulsation at ATS-6, we have been able to estimate the plasma density at geostationary orbit. We then calculated periods of theoretical cavity mode resonances in the plasmatrough and the eigenperiods of different wave modes and harmonics at geostationary orbit. We developed a model of the variation of plasma density, and hence eigenperiods, within the magnetosphere which is consistent with these calculations and with the amplitude, phase and ellipticity observations made over the array of ground observatories. In this model we suggest that hydromagnetic field line resonances occur in the plasmatrough and in the plasmasphcre, which are the second and fundamental harmonic guided toroidal mode resonances, respectively. The model also allows us to evaluate the damping experienced by hydromagnetic standing waves in the magnetosphere. The damping is found to be slightly higher than that previously suggested for daytime conditions.  相似文献   

3.
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator.  相似文献   

4.
Magnetic field measurements from 133 low-latitude transits of the HEOS-1 satellite through the magnetosphere have been used to analyse the low-frequency pulsation activity in the outer regions of the geomagnetic field. Providing full longitude coverage in the sunward hemisphere at geocentric distances larger than ~7.5 Re, this survey complements previous low-frequency pulsation data from satellites at smaller geocentric distances. Several giant PC5 events, each being mainly compressional and lasting 1–2 hr, are described in detail and it is shown that this phenomenon is relatively common in the 8–12 Re, geocentric distance range near dusk. A depression of the ambient field magnitude always accompanied the events, suggesting that they are associated with a region of enhanced plasma pressure. The properties of these wave events are compared with the predictions of current micropulsation theories involving a Kelvin-Helmholtz generation mechanism and field-line resonance. Unlike the PC5 events observed nearer Earth, these events were not obviously related to periods of enhanced geomagnetic activity.  相似文献   

5.
Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKp. The dynamic cross-correlation between JDW and ΣKp indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period.  相似文献   

6.
By using an image-dipole magnetic field model for a variety of plasma density profiles we have studied the latitude effect of the 0.1–1.0-Hz hydromagnetic wave propagation in the Earth's magnetosphere. On comparing the results of signal group delay time calculations for dipole and model magnetic fields with ground and satellite observations we obtain some propagation characteristics of Pc1s and localize the regions of their generation. Our results show that most high-latitude Pc1 events are generated in the outer magnetosphere in accordance with ground and satellite observations and theoretical considerations. The non-dipole geometry of the geomagnetic field in the outer magnetosphere (at geomagnetic latitudes φ0 > 66°, L > 6) has a significant effect on the hydromagnetic wave propagation.  相似文献   

7.
We present some results from a model of forced oscillations of the magnetosphere. The purpose of this work is to examine the effects and consequences of damping on geomagnetic pulsations as observed on the ground. The aim of the current work is to quantify the amount of damping applicable to geomagnetic pulsation waveforms. Ionospheric conductivities vary with latitude and time of day and this variation will effect the damping of geomagnetic pulsations. The variations in ionospheric conductivities are taken into account to predict the changes in amplitude and phase of geomagnetic pulsations over an extended latitudinal array of ground observatories. Three situations are modelled where the damping factor γ/ωn, which is related to the amplitude loss per cycle, is different: (i) γ/ωn approximately equal to 0.01, this corresponds to the ionospheric Joule damping of Newton et al. (1978); (ii) λ/ωn equal to 0.1, this value is consistent with the empirically determined day-time damping factors from the observed latitude-dependent transient decays of the pulsation single effect events discussed by Siebert (1964). The value of 0.1 as the damping factor is taken as typical of day-time conditions and its effect on amplitude and phase for continuous pulsations is considered; and (iii) λ/ωn is latitude-dependent; three different levels of damping are used appropriate for the night-time conditions associated with the auroral electrojet, plasmatrough and plasmasphere.The results from the model suggest that observationally determined damping factors are greater than those computed from ionospheric Joule damping alone. The model also illustrates the broadening of the latitudinal resonance width with increasing damping and the reducing of the phase change across resonance to less than 180°. The model also successfully reproduces features of pulsation single effect events and Pi2 pulsations.  相似文献   

8.
Using key dates associated with solar interaction regions (SIR), a superposed epoch analysis is performed on the zonal and meridional kinetic energy density and square of the vorticity (enstrophy) of the main motion at 500 mb height. No relationships are found between SIR and these atmospheric dynamical parameters irrespective of the polarity (North or South) of the enhanced interplanetary magnetic fields (IMF) within the SIR, or with latitude and season. This investigation and other available results suggest that the short term solar variations do not influence large volumes of the troposphere but only localized regions.The average atmospheric kinetic energy density during active solar conditions is higher than during quiet solar condition, with no significant differences in enstrophy. This confirms an earlier result.It is also shown that SIR with enhanced southward directed IMF correspond to higher level of geomagnetic index (Ap > 10, Kp > 3) than randomly selected days.  相似文献   

9.
C. L. Tang  S. Q. Song 《Solar physics》2012,279(2):537-550
Mirror mode waves in the solar wind are typically observed not as quasi-periodic sinusoidal signatures, but as trains of nonperiodic structures of two types: magnetic ??peaks?? and magnetic ??dips.?? Some trains of long durations have been called mirror mode storms. In this work we report mirror mode waves downstream of a stream interaction region (SIR) forward shock observed near 1?AU on 7?May 2007 with Solar Terrestrial Relations Observatory (STEREO) and Time History of Events and Macroscale Interactions during Substorms (THEMIS) data. The high-resolution magnetic-field data (0.125-second resolution) from STEREO are scanned to search for magnetic dips and peaks (or upgoing magnetic ??mesas??) in the solar wind. STEREO-A observes a mirror mode storm: the appearance of mirror mode waves (mainly magnetic peaks and upgoing mesas) is simultaneous with the entry into a high-density, high-temperature, and high plasma ?? accompanied by a depressed field region; the magnetic dips survive in the lower plasma-?? region. STEREO-B observes mirror mode waves (mainly magnetic peaks) with different amplitudes and asymmetric forms, which can survive in a low plasma ?? region. THEMIS-D, which was located in the solar wind, also observes mirror mode waves (mainly magnetic peaks and upgoing mesas) as well as an enhanced ion temperature anisotropy (T ????3T ??). The enhanced ion temperature anisotropy and high plasma ?? satisfy the mirror-instability criterion. These observations of STEREO and THEMIS-D show that mirror mode waves can be excited downstream of a SIR forward shock near 1?AU.  相似文献   

10.
The propagation of the geomagnetic effect into the exosphere is investigated based on a free-flight particle kinetic model of exospheric densities and temperatures. Exobasic neutral gas conditions and their variations during a geomagnetic storm occurrence are adopted as given by the OGO-6 model. The contributions of particles originating at different exobasic locations to the density and temperature at exospheric regions are taken into account according to the time needed to reach these regions. A short-time geomagnetic variation of exobasic conditions is simulated by a Gaussianshaped Ap -index variation with an FWHM of 20 min. It is then shown that the relative amplitude and the half width of the geomagnetic density variation increase strongly with exospheric heights. The density peak and the main temperature peak are shown to be delayed by more than one and two hours, respectively, at heights above 10,000 km. The temperature variation changes from a singlepeaked to a double-peaked structure at greater exospheric heights. It is shown that the exospheric density response to geomagnetic disturbances is detectable in observations of the geocoronal He-1-584 Å resonance radiation.  相似文献   

11.
The distribution of By in the geomagnetic tail associated with a net cross-tail magnetic flux, recently experimentally discovered, is here investigated within the framework of two-dimensional but non-planar field adiabatic time-independent equilbria. It is found that the flux distribution is controlled by the pressure anisotropy of the plasma, By being enhanced at the current sheet centre relative to that in the lobes for P>P and vice-versa for P>P. For P>P a broad region of depressed field strength is found across the centre plane of the current sheet, terminated at its outer boundaries by spikes in the perpendicular current, across which By and Bx are “switched on” and rapidly increase towards their values in the low-β lobes. For P>P a thin high-current density layer forms at the sheet centre if the marginal firehose condition is approached, across which the Bx field reverses by rotation at nearly constant magnitude about the z-axis. The field magnitude in this thin layer depends upon the pressure anisotropy, such that the plasma remains just firehose stable within it, and may approach an appreciable fraction of the lobe field strength even for moderate anisotropies. Such structures have been observed in the geomagnetic tail, but do not appear to be a common feature of the quiet-time plasmasheet, where the field strength at the centre plane can reach small values with little obvious enhancement of By. In terms of the present model these observations require that either P>P in the quiet-time tail or that the plasma is within one or two per cent of isotropy if P>P. These results then indicate that the production of plasma pressure anisotropy during adiabatic inward transport towards the Earth, which is generally expected to lead to P>P and its destruction by either macroscopic or microscopic processes, requires further study.  相似文献   

12.
Coronal mass ejections and high-speed streams from the Sun, and related structures formed and evolved in interplanetary space, i.e. interplanetary manifestations of CMEs (ICMEs) and stream interaction regions (SIRs)/corotating interaction regions (CIRs), are mainly responsible for geomagnetic disturbances in the Earth’s magnetic environment. However, the presence or absence of associated/finer structures of ICMEs (e.g., shock/sheath, magnetic cloud) and SIRs/CIRs (forward and reverse shocks, stream interface) might influence their geoeffectiveness as these features within large-scale structures of ICMEs and SIRs display different and varying plasma and field characteristics. In this work, we analyze the solar-wind plasma and field parameters (plasma velocity, density and pressure, magnetic field, its north-south component and electric field) together with geomagnetic activity parameters (kp and Dst), applying the method of superposed epoch analysis. By systematically changing the time of passage of different features as epochs, e.g. discontinuities/shocks, CMEs/magnetic clouds in ICMEs and discontinuities/forward shocks in SIRs/CIRs, we study the relative geoeffectiveness of not only the large-scale structures (ICMEs/SIRs/CIRs), but of their finer features also. We critically analyze the differences in geoeffectiveness due to different structures and features, with distinct plasma/field characteristics, and we utilize these results to understand the mechanism during their interaction with geospace.  相似文献   

13.
A model is developed to represent a toroidal mode of Pc5 geomagnetic pulsations. It is shown that this model is consistent in its predictions, such as the latitude profiles of amplitude and phase and their dependence on the height integrated Pedersen conductivity, Σp, with those of Walker's (1980) theory. It is also shown that this theory is relatively easily capable of accommodating (i) a variety of field line plasma mass density distributions, (ii) a variety of external excitation schemes, (iii) unequal Σp's at each end of the field lines and (iv) non-dipolar geomagnetic fields. The theory yields the transient as well as the steady state response, an important feature permitting application to short-lived events or to those for which the generator is amplitude modulated. It is shown, for instance, that the amplitude-latitude profile varies during the transient. It is also shown that the steady state latitude profiles of amplitude and phase are the dual of those observed as a function of frequency when the excitation frequency is scanned through a resonance. A more realistic steady state energy flow from a generator along the field lines to the ionosphere is inherent in this theory compared with that from the mode to the ionosphere which is inherent in Walker's theory.  相似文献   

14.
The first simultaneous (within 6 min) observations of the low altitude polar cusp regions in the conjugate hemispheres are reported here based on two events detected by the DMSP-F2 and F4 satellites within the same geomagnetic local time sector. It is found that the electron spectra in the cusp are identical in the opposing hemispheres. In one case the observed latitudinal location and extent of the cusps are the same at the two hemispheres. However, in the other case the location of the equatorward boundary of the cusp regions differs by about 2° with drastically different spatial features. It is also found that in one of the events the plasma sheet electron precipitation regions overlap with the cusp regions at lower latitude in both hemispheres. The poleward boundary of these overlapping regions is located at the same latitude on either hemisphere, suggesting that this is the latitude of the last closed field line and that the cusp electrons are present on both closed and open magnetic field lines.  相似文献   

15.
Geomagnetic pulsations, in the period range 10–150 sec, have been analysed from five stations; Eskdalemuir (L = 3.1), Lerwick (L = 4.0), St. Anthony (L = 4.9), Sodankyla (L = 5.3) and Tromsø (L = 6.6). The results of 12 observatory years' worth of data are presented in the form of contour maps showing the frequency of occurrence of the pulsations as a function of Kp index and of local time. The maps show that a ground based observatory is more likely to record shorter period oscillations (pc 3) when the geomagnetic field line linking the station with the southern hemisphere passes through the plasmatrough than when the observatory field line links the plasmasphere. The peak occurrence of pc 3 for the observatories considered is at 08:45 hr ± 1 hr LT and is related to the observatory L value and the average night-time Kp index by the equation, L = 8.1 ? 1.2Kp. At Eskdalemuir, the spectrum is broader band than the other stations and tends to divide into two peaks; the pc 3 (20 sec) peak tends to occur when the plasmapause has moved in close to the observatory; while the pc 4 (60 sec) peak occurs when the Kp values have been lower and the plasmapause is further away at higher latitudes.  相似文献   

16.
The equilibrium structure of two-dimensional magnetic current sheets is investigated for systems in which the plasma pressure dominates the bulk flow energy, as appears appropriate for the quiet time plasmasheet in the geomagnetic tail. A simple model is studied in which the field is contained between plane parallel boundaries and varies exponentially along the system, while the plasma pressure is anisotropic, the anisotropy being arbitrary but constant along the centre plane. When the field is highly inflated by the plasma current it is found that adiabatic solutions exist only when the plasma pressure is close to isotropic. For the case P > P it is argued that a thin, non-adiabatic current layer will in general form at the sheet centre, usually embedded within a much broader adiabatic current distribution. When P > P, a broad region of very depressed fields develops about the centre of the current sheet, terminated at its outer boundary by a spike in the current density. This central region becomes unstable to the mirror mode well before the limiting adiabatic solution is reached.  相似文献   

17.
Ground observations of Pi 2 geomagnetic pulsations are correlated with satellite measurements of plasma density for three time intervals. The pulsations were recorded using the IGS network of magnetometer stations and the plasma density measurements were made on board GEOS-1 and ISEE-1. Using the technique of complex demodulation, the amplitude, phase and polarisation characteristics of the Pi 2 pulsations are observed along two meridional profiles; one from Eidar, Iceland (L = 6.7) to Cambridge, U.K. (L = 2.5) and the other from Tromso, Norway (tL = 6.2) to Nurmijarvi, Finland (L = 3.3). The observed characteristics of the Pi 2 pulsations are then compared with the plasma density measurements. Close relationships between the plasmapause position and the position of an ellipticity reversal and a variation in H component phase are observed. A small, secondary amplitude maximum is observed on the U.K./Iceland meridian well inside the position of the projection of the equatorial plasmapause. The primary maxima on the two meridians, in general occur close to the estimated position of the equatorward edge of a westward electrojet. Using the plasma density measurements, the periods of surface waves at the plasmapause for two intervals are estimated and found to be in good agreement with the dominant spectral peaks observed at the ground stations near the plasmapause latitude and within the plasmasphere. The polarisation reversal, together with phase characteristics, spectral evidence and the agreement between the theoretical and observed periods leads to the suggestion that on occasions a surface wave is excited on the plasmapause as an intermediate stage in the propagation of Pi 2 pulsations from the auroral zone to lower latitudes.  相似文献   

18.
The problem of the ionospheric disturbances associated with geomagnetic storms is examined with the goal of searching for a relationship between the time-developments of the two phenomena. Faraday rotation measurements of total electron content (NT) are used to monitor the ionospheric F-region at a mid-latitude site, while a variety of geomagnetic parameters are examined as possible ways of following the geomagnetic variations. The ionospheric and geomagnetic data taken during 28 individual storms from 1967 to 1969 are used to search for a predictive scheme which can be tested using data from 17 storms in 1970. The specific aim is to find the geomagnetic parameter whose time-development can best forecast whether or not the ionospheric response will include an initial positive phase prior to the normally extended period of F-region depletions. Correlations between NT and the geomagnetic indices Kp, and equatorial Dst(H) prove to be wholly inadequate. The local times of main-phase-onset (MPO) determined from the equatorial Dst(H) indices as well as from local horizontal component data, also prove to be unsatisfactory. The best correlations are obtained using local measurements of the total geomagnetic field (F). These results show that a storm commencement (SC) will produce an enhancement in nt during the afternoon period following the SC unless there is an intervening post-midnight period with a strong depression of the geomagnetic field. Operationally this is taken to be a depression in F of at least 100γ near 03:00 LT  相似文献   

19.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

20.
Three parameters of the solar wind, proton number density n, Z-component of frozen-in magnetic field, in solar ecliptic coordinates and magnetic field variability ΔB, may be called geoactive parameters since each of them is responsible for a certain phase or stage of a geomagnetic storm.An undisturbed solar corpuscular stream differs from the quiet solar wind mainly in higher bulk velocity v; other parameters, in particular, n, Z and ΔB, are not enhanced in the stream. However, the examination of a number of geomagnetic storms shows that v is not a geoactive parameter. Hence the corpuscular stream itself is not more geoactive than the quiet solar wind.The retarding of corpuscular stream by the quiet solar wind results in various plasma deformations (compression, torsion, shear). This, in turn, leads to the creation, in the stream and ambient quiet solar wind, of geoactive zones. Each zone is characterized by the enhancement of some geoactive parameter. The entry of the Earth into a geoactive zone causes a corresponding phase or stage of a geomagnetic storm.The concept of geoactive zones is applied to the analysis of the geomagnetic storm of 8–10 July 1966.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号