首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oscillations of a magnetized incompressible cylinder with a uniform magnetic field along its axis and the resulting electromagnetic field are studied. Two types of characteristic oscillations, torsional and Alfvén, are found to exist in the linear approximation. In the case of an infinite cylinder with torsional oscillations, no electromagnetic field is generated. In the case of Alfvén oscillations, an electromagnetic field develops around the cylinder with a local flux density that falls off exponentially with radial distance from the axis of the cylinder and has a time average of zero. The results are interpreted physically.  相似文献   

2.
Stochastic fluctuations of the magnetospheric plasma and background magnetic field, especially intense during geomagnetically active periods, can provide an additional mechanism of damping of Alfvén field line oscillations. To quantify this hypothesis, we consider a driven Alfvén field line resonator with stochastic fluctuations of the Alfvén resonant frequency. This problem is first considered analytically for a low level of fluctuations, then a more general numerical approach is introduced. The results of analytical calculations and numerical modeling both indicate the deterioration of resonant properties of the resonator owing to stochastic background fluctuations.  相似文献   

3.
We investigate MHD waves in potential and force-free magnetic arcades describing bipolar active regions. The eikonal method allows us to study analytically the short waves, which are divided into Alfvén and magnetosonic waves. The eigen-modes of magnetic arcades are formed as a result of their reflection at the photosphere. The Alfvén mode oscillations of a certain frequency take place on magnetic surfaces. The fast-mode oscillations also take place on some surfaces but they are not magnetic surfaces. Both the Alfvén and fast-mode eigen-frequencies change continuously from one such surface to another. Each oscillation surface has a discrete set of eigen-frequencies.  相似文献   

4.
P. M. Edwin  B. Roberts 《Solar physics》1983,88(1-2):179-191
The nature of oscillations in a magnetic cylinder embedded in a magnetic environment is investigated. It is shown that the standard slender flux tube analysis of a kink mode in a cylinder excludes the possibility of a second mode, which arises under photospheric conditions. Under coronal conditions, two widely separated classes of oscillation can be freely sustained, one on an acoustic time-scale and the other on an Alfvénic time-scale. The acoustic-type oscillations are always present, but the much shorter period, Alfvénic-type, oscillations arise only in high density (strictly, low Alfvén velocity) loops. An application to waves in fibrils is also given, and suggests (following Wentzel, 1979) that they are fast kink waves propagating in a density enhancement.  相似文献   

5.
P. S. Cally  M. Goossens 《Solar physics》2008,251(1-2):251-265
The efficacy of fast?–?slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfvén and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfvén wave may couple to the magnetoacoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical “scattering experiment,” placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvénic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfvén waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfvén fluxes are produced when the field is inclined 30°?–?40° from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60°?–?80°.  相似文献   

6.
The effects of both density stratification and magnetic field expansion on torsional Alfvén waves in magnetic flux tubes are studied. The frequencies, the period ratio P 1/P 2 of the fundamental and its first-overtone, and eigenfunctions of torsional Alfvén modes are obtained. Our numerical results show that the density stratification and magnetic field expansion have opposite effects on the oscillating properties of torsional Alfvén waves.  相似文献   

7.
A unified theory of low frequency instabilities in a two component (cold and hot) finite-β magnetospheric plasma is suggested. It is shown that the low frequency oscillations comprise two wave modes : compressional Alfvén and drift mirror mode. No significant coupling between them is found in the long-wave approximation. Instabilities due to spontaneous excitation of these oscillations are considered. It is found that the temperature anisotropy significantly influences the instability growth rate at low frequency. A new instability due to the temperature anisotropy and density gradient appears when the frequency of compressional Alfvén waves is close to the drift mirror mode frequency. The theoretical predictions are compared in detail with the Pc5 event of 27 October 1978 observed simultaneously by the GEOS 2 satellite and the STARE radar facility. It is shown that the experimental results can be interpreted in terms of a compressional Alfvén wave driven by the drift anisotropy instability.  相似文献   

8.
Dimensionless resonant frequencies of hydromagnetic modes have been calculated for a simple model plasmasphere including a lower ionosphere. Results for the Alfvén mode are broadly consistent with those obtained by Hughes and Southwood [1976]. It is further concluded that the lower ionosphere, despite its strong damping effect for part of the day, does not provide much dissipative coupling between adjacent magnetic field shells in the Alfvén mode. The fast mode is found to be only slightly damped for horizontal wavelengths of global extent.  相似文献   

9.
A study is made of the influence of cool dispersion (due to ion inertia) upon the propagation of Alfvén waves in the magnetosphere. It is shown that the Alfvén velocity minimum elongated along the magnetic field, may act as a waveguide. Some waveguiding properties of the plasmapause are investigated and relevant eigen-modes determined. The possibility of interpreting geomagnetic pulsations of various types as eigen-oscillations of the waveguide at the plasmapause, is discussed.  相似文献   

10.
Magnetospheric Alfvén waves are reflected by the ionosphere. We investigate the effect of horizontally varying ionospheric conductivity on the process of Alfvén wave reflection. Four idealised ionospheric models are considered in detail. We find that the reflection process is strongly dependent on the orientation of the wave electric field vector with respect to the boundary between high and low conductivities, and under certain conditions subsidiary Alfvén waves are generated. The field-aligned currents in the subsidiary Alfvén waves serve to close divergent horizontal currents resulting from the non-uniform ionospheric conductivity. The implications for ground-based pulsation studies are discussed.  相似文献   

11.
The excitation of Alfvénic waves in solar spicules by localized Alfvénic pulses is investigated. A set of incompressible MHD equations in the two-dimensional xz plane with steady flows and sheared magnetic fields is solved. Stratification due to gravity and transition region between chromosphere and corona is taken into account. An initially localized Alfvénic pulse launched below the transition region can penetrate from transition region into the corona. We show that the period of the transversal oscillations is in agreement with those observed in spicules. Moreover, it is found that the excited Alfvénic waves spread during propagation along the spicule length, and suffer efficient damping of the oscillations amplitude. The damping time of the transverse oscillations increased with decreasing k b values.  相似文献   

12.
When a highly conducting magnetized plasma passes an object with lower conductivity, or a body with inhomogeneous conductivity, 2-D structures are formed, the so-called `Alfvén wings'. These structures may arise, for example, at a Jovian moon without an intrinsic magnetic field (Callisto). In this case, Alfvén wings could be generated in the magnetized Jovian magnetospheric plasma flow owing to the in homogeneity of the moon's ionosphere/atmosphere conductivity. Such Alfvén wings may be considered as a satellite magnetosphere; the satellite magnetospheric magnetic field is a disturbed field of the Jovian magnetospheric plasma flow. An analytical solution is obtained in a simple proposed model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We suggest a two-step mechanism for the generation of the parallel electric field at the Alfvén wave. At the first step, the coupling with the compressional mode due to the magnetic field non-uniformity and finite plasma pressure provides the parallel magnetic field of Alfvén wave. At the second step, the compressional mode acquires the parallel electric field due to coupling with the electrostatic mode as required by the quasi-neutrality condition in kinetics. The parallel electric field acquired by the Alfvén mode is considerably larger than that due to the single-step coupling between the Alfvén and electrostatic modes in kinetics.  相似文献   

14.
In the context of white dwarf asteroseismology, we investigate the vibrational properties of a non-convective solid star with an axisymmetric purely toroidal intrinsic magnetic field of two different shapes. Focus is laid on the regime of node-free global Lorentz-force-driven vibrations about the symmetry axis at which material displacements have one and the same form as those for nodeless spheroidal and torsional vibrations restored by Hooke’s force of elastic shear stresses. Particular attention is given to the even-parity poloidal Alfvén modes whose frequency spectra are computed in analytic form, showing how the purely toroidal magnetic fields completely buried beneath the star surface can manifest itself in seismic vibrations of non-magnetic white dwarfs. The spectral formulae obtained are discussed in juxtaposition with those for Alfvén modes in the solid star model with the poloidal, homogeneous internal and dipolar external, magnetic field whose inferences are relevant to Alfvén vibrations in magnetic white dwarfs.  相似文献   

15.
Based on a plane-parallel isothermal model solar atmosphere permeated by a uniform magnetic field directed against the action of gravity, we investigate the parametric generation of acoustic-gravity disturbances by Alfvén waves propagating along the corresponding field lines. We established that for a weak linear coupling of Alfvén waves, the nonlinear interaction of Alfvén waves propagating in opposite directions (rather than in the same direction) is the predominant generation mechanism of acoustic-gravity disturbances at the difference frequency. In this case, no acoustic flow (wind) was found to emerge at a zero difference frequency in the acoustic-gravity field.  相似文献   

16.
Using the energy variational method of magneto-solid-mechanical theory of a perfectly conducting elastic medium threaded by magnetic field, the frequency spectrum of Lorentz-force-driven global torsional nodeless vibrations of a neutron star with Ferraro’s form of axisymmetric poloidal nonhomogeneous internal and dipole-like external magnetic field is obtained and compared with that for this toroidal Alfvén mode in a neutron star with homogeneous internal and dipolar external magnetic field. The relevance of considered asteroseismic models to quasi-periodic oscillations of the X-ray flux during the ultra powerful outbursts of SGR 1806−20 and SGR 1900+14 is discussed.  相似文献   

17.
Vanlommel  P.  Goossens  M. 《Solar physics》1999,187(2):357-387
This paper studies the effect of a magnetic atmosphere on the global solar acoustic oscillations in a simple Cartesian model. First, the influence of the ratio of the coronal and the photospheric temperature τ and the strength of the magnetic field at the base of the corona Bc on the oscillation modes is studied for a convection zone-corona model with a true discontinuity. The ratio τ seems to be an important parameter. Subsequently, the discontinuity is replaced by an intermediate chromospheric layer of thickness L and the effect of the thickness on the frequencies of the acoustic waves is studied. In addition, nonuniformity in the magnetic field, plasma density and temperature in the transition layer gives rise to continuous Alfvén and slow spectra. Modes with characteristic frequencies lying within the range of the continuum may resonantly couple to Alfvén and/or slow waves.  相似文献   

18.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Here we investigate the dissipation of such waves due to phase mixing at the presence of shear flow and field in the stratified atmosphere of solar spicules. The initial flow is assumed to be directed along spicule axis and to vary linearly in the x direction and the equilibrium magnetic field is taken 2-dimensional and divergence-free. It is determined that the shear flow and field can fasten the damping of standing Alfvén waves. In spite of propagating Alfvén waves, standing Alfvén waves in Solar spicules dissipate in a few periods. As height increases, the perturbed velocity amplitude does increase in contrast to the behavior of perturbed magnetic field. Moreover, it should be emphasized that the stratification due to gravity, shear flow and field are the facts that should be considered in MHD models in spicules.  相似文献   

19.
The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered.  相似文献   

20.
《Planetary and Space Science》1999,47(3-4):545-555
We consider the inductive interaction between a conducting body and a magnetizedincompressible plasma in relative uniform motion, which has application to the Io–Jupitersystem, for example. An incompressible plasma only supports one mode of propagation, namelythe Alfvén mode. In the case of free oscillations, this mode propagates the perturbations in themagnetic field and in the plasma velocity unattenuated along the direction of the backgroundfield, while the plasma pressure balances the magnetic pressure. The situation changes in thepresence of source currents and in a flowing plasma. In particular, the parallel plasma vorticityand parallel plasma current are propagated unattenuated along the familiar Alfvéncharacteristics, while the field and velocity perturbations suffer Laplacian decay in the near field.We study these perturbations in the frame of the body and compare them to the case of no sourceterms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号