首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations and analyses of hiss events, recorded at College (dp. lat. 64.62°N) and Bar 1 (dp. lat. 70.20°N) during periods of varying auroral and geomagnetic activity, reveal three different types of events. These are (1) auroral substorm events with associated hiss bursts during disturbed period, (2) quiet-time hiss events accompanying stationary quiet auroral arcs and (3) hissless events at times of auroral and magnetic activity. Quiet-time observations seem to suggest that the substorm activity is not a necessary requirement for generating wideband hiss. On the other hand, examples of auroral and magnetic activity with complete absence of VLF hiss indicate that the ground reception of VLF/ELF natural emissions is largely controlled by propagation conditions in the ionosphere. There is either little or no correlation found between hiss observations at the two stations separated by about 600 km.  相似文献   

2.
The association between VLF hiss and auroral-light intensity has been studied for pulsating auroras by coordinated observations with a broad band VLF receiver and a low light level TV system viewing the N2+ ING emissions. Power spectral analyses of the VLF hiss and auroral-light intensity fluctuations display a common peak at 1.3 ± 0.3 Hz. Cross-spectral analysis shows that the times of the peaks in the auroral-light intensity fluctuations differ from those of the VLF hiss by times ranging between zero and 0.2 s. This result is shown to be compatible with a cyclotron resonance interaction in the vicinity of the equatorial plane. The periodicity of the intensity fluctuations can be accounted for by assuming the process is driven by echoing VLF hiss, which may be single-phase or three-phase.  相似文献   

3.
The particle energy required to generate the observed VLF hiss in the Jovian magnetosphere has been computed under longitudinal and transverse resonance condition. It is shown that the minimum energy required by electrons to generate VLF hiss under the longitudinal resonance condition lies in the range of 100eV–1keV for the wave frequencies of 2–10 kHz, while the corresponding energy range for the transverse resonance condition for the same frequency range comes out to be 8 keV–40 keV. Further, the average radiated power by the erenkov process in the Jupiter's magnetosphere atL=5.6 Rj by electrons of energy 10 eV, 100 eV, and 1 keV for the wave frequency of 5 kHz has also been computed.  相似文献   

4.
A newly developed direction finding (DF) technique for auroral hiss based on the measurement of time differences of wave arrival was carried out in 1978 at Syowa Station (geomag. lat. -70.4°), Antarctica and its two slave unmanned observing points located at about 20 km distances from Syowa. The auroral hiss signals (0.3–100 kHz) received at the two spaced points were transmitted to Syowa by a wide-band telemeter of 2 GHz. The arrival time difference of auroral hiss between Syowa and each spaced point was automatically determined by cross-correlating the waveforms of the received signals, and then the incident and azimuthal angles were measured with an accuracy of about 10°.It has been found that the new DF technique can determine localized exit regions at the ionospheric level which show rapid temporal movements. A comparison of the DF results with ground-based auroral data has shown that impulsive type auroral hiss with a wide-band frequency range has not emerged from the whole region of a bright aurora but from some localized regions of bright electron auroras at the ionospheric level, and that the arrival directions of auroral hiss change rapidly in accordance with the auroral movements.  相似文献   

5.
6.
Magnetosonic waves near the harmonics of proton cyclotron frequency can become unstable in the presence of oxygen ions in the ring current. For cos θ = 0 (θ being the angle between the wave vector and the geomagnetic field) the growth rates are peaked at some optimum value of the oxygen ion density, whereas for cos θ ≠ 0 they are reduced with the increase of oxygen ion density. The presence of hot oxygen ions can generate instability near the harmonics of oxygen cyclotron frequency. The growth rates are enhanced with the increase of cos θ. This mechanism can generate discrete spectrum of ELF hiss beyond the plasmapause.  相似文献   

7.
Latitudinal distributions of narrow-band 5 kHz hisses have been statistically obtained by using VLF electric field data received from the ISIS-1 and -2 at Syowa station, Antartica and Kashima station, Japan, in order to study an origin of the narrow-band 5 kHz hisses which are often observed on the ground in mid- and low-latitudes. The result shows that the narrow-band 5 kHz hiss occurs most frequently at geomagnetically invariant latitudes from 55° to 63°, that are roughly the plasmapause latitudes at various geomagnetic activities, both in the northern and southern hemispheres.The narrow-band 5 kHz hiss seems to be generated by the cyclotron instabilities of several keV to a few ten keV electrons for the most feasible electron density of 10 cm?3?103 cm?3 in the vicinity of the equatorial plasmapause since the hotter electrons with energy of 10–100 keV are dominant just outside the plasmapause. This will be the origin of the narrow-band 5 kHz hiss observed frequently in mid- and low-latitudes.  相似文献   

8.
A surprisingly good correlation has been found for SPA measured at VLF propagation () and 7 GHz solar microwave burst energies (E ). The data are correlated in the form = a log E + b and include all kind of solar events, irrespectively from type, complexity or duration. Soft X-ray peak fluxes (I x) have a known similar correlation to SPA, and a functional relationship of the form 479-01 can be established. As one practical application, the energies from solar events can be reasonably well inferred from SPA data, which are quite reliable and easily obtainable.  相似文献   

9.
The study of VLF waves at ground based stations is an important source of information on particles trapped in the magnetosphere. By various techniques it is also possible to measure plasma densities, electric fields and monitor energetic particle injection. By studying the propagation of waves beneath the ionosphere it is possible to study particle precipitation from the magnetosphere. In this paper we summarise some of the techniques and results obtained from the study of VLF waves at the South African research station in Antarctica.  相似文献   

10.
Latitudinal characteristics of ELF hiss in mid- and low-latitudes have been statistically studied by using ELF/VLF electric field spectra (50 Hz-30 kHz) from ISIS-1 and -2 received at Kashima station, Japan from 1973 to 1977. Most ISIS ELF/VLF data observed in mid- and low-latitude include ELF hiss at frequencies below a few kHz. The ELF hiss has the strongest intensity among VLF phenomena observed by the ISIS electric dipole antenna in mid- and low-latitudes, but the ELF hiss has no rising structure like the chorus in the detailed frequency-time spectrum. The ELF hiss is classified into the steady ELF hiss whose upper frequency limit is approximately constant with latitude and the ELF hiss whose upper frequency limit increases with latitude. These two types of ELF hiss occur often in medium or quiet geomagnetic activities. Sometimes there occurs a partial or complete lack of ELF hiss along an ISIS pass.Spectral shape and bandwidth of ELF hiss in the topside ionosphere are very similar to those of plasmaspheric hiss and of inner zone hiss. The occurrence rate of steady ELF hiss is about 0.3 near the geomagnetic equator and decreases rapidly with latitude around L = 3. Hence it seems likely that ELF hiss is generated by cyclotron resonant instability with electrons of several tens of keV in the equatorial outer plasmasphere beyond L = 3.Thirty-seven per cent of ELF hiss events received at Kashima station occurred during storm times and 63% of them occurred in non-storm or quiet periods. Sixty-seven per cent of 82 ELF hiss events during storm times were observed in the recovery phase of geomagnetic storms. This agrees with the previous satellite observations of ELF hiss by search coil magnetometers. The electric field of ELF hiss becomes very weak every 10 s, which is the satellite spin period, in mid- and low-latitudes, but not near the geomagnetic equator. Ray tracing results suggest that waves of ELF hiss generated in the equatorial outer plasmasphere propagate down in the electrostatic whistler mode towards the equatorial ionosphere, bouncing between the LHR reflection points in both the plasmaspheric hemispheres.  相似文献   

11.
The results from 80 hours of simultaneous visual/video and VLF recordings made during the Lyrids, Perseids, Orionids, Leonids and Geminids are presented. All meteor magnitudes from –11 to +4 have been sampled at least once during these observations. The only positive VLF fireball detection was made at 19:57:32 UT on August 11, 1993 from the South of France. We present a Fourier transform analysis of this event and we also derive a lower limit to the electrical field strength produced by the fireball at the antenna. Our present observations suggest a lower limit of Mv –10 ± 1 for a fireball to produce a VLF signal.  相似文献   

12.
The mutual influence between two whistler mode waves, through cyclotron resonant interaction of each wave with the same set of energetic electrons, is analysed both theoretically and by computer simulations ; this two-wave interaction mechanism seems to be an important process in understanding recently observed phenomena in Siple Station VLF multi-wave injection experiments. A criterion is established to estimate the threshold for the critical frequency spacing (for given wave amplitudes) for a significant mutual interaction between two monochromatic waves to occur. This criterion is based on the overlap of coherence bandwidths associated with the trapping domains of each wave and it takes into account the geomagnetospheric medium inhomogeneity. The effects of a perturbing second wave on electrons trapped by a first wave is discussed, considering the general situation of varying-frequency waves, and a simulation model is used to track the motion of test-electrons in the two-waves field. Conditions leading to detrapping and subsequent trapping by the second wave of previously first-wave trapped electrons are analysed and suggest the possibility of this phenomenon to play an important role in frequency entrainment and energy exchange between two waves.  相似文献   

13.
The work attempts to give a theoretical explanation of the triggering of VLF emissions by magnetospheric whistler morse pulses. First studied is the behaviour of resonant particles in a whistler wave train in an inhomogeneous medium. It is found that second order resonant particles become stably trapped in the wave. After 1–2 trapping periods such particles dominate the resonant particle distribution function, and produce large currents that are readily estimated.  相似文献   

14.
The presence of highly anisotropic ion velocity distributions in the weakly-ionized plasma of strongly convecting areas of the high latitude F-region leads to the excitation of electrostatic microinstabilities (λ ~ 50 cm) at frequencies of the order of the lower hybrid frequency and smaller. We have estimated the threshold conditions for the excitation of the unstable waves under various physical circumstances. For some representative conditions we have also calculated the frequencies, growth rates, and wavelengths for the fastest growing modes using the linear approximation. We stress that the present theory breaks down in regions where the plasma cannot be treated as locally homogeneous. The altitude range over which the theory is applicable also varies with conditions. For highly disturbed conditions the upper altitude limit may be as high as 400 km.  相似文献   

15.
Plasmaspheric hiss waves have been frequently invoked to explain the slow loss of the radiation belt electrons. However, the effect of hiss waves outside the plasmasphere on the radiation belt electrons remains unclear. Here, on the basis of Van Allen Probes observations and quasilinear simulations, we show that the hiss waves outside the plasmasphere are able to cause the significant precipitation loss of energetic electrons on a timescale of 1 day. In the event of interest, the hiss wave power spectra density reached up to \(10^{-6}~\mbox{nT}^{2}/\mbox{Hz}\), and the obtained pitch-angle diffusion coefficients are found to be \(10^{2}\)\(10^{4}\) times larger than the momentum and cross diffusion coefficients. During a period of 1 day, the modeled hiss waves caused the depletion of 300–500 keV electrons by up to 10 times. These results suggest that the hiss waves outside the plasmasphere should be taken into account in the future radiation belt modeling.  相似文献   

16.
A self-consistent quasilinear model of the interaction between VLF emissions and geomagnetic pulsation is set forth. As a result an explicit expression of a modulation frequency dependence can be obtained.  相似文献   

17.
The resonant interaction between the whistler mode waves and the energetic electrons near the plasmapause boundary has been studied in the presence of field aligned currents which seem to exist during substorm activity. It is shown that the electrons which carry the current along the direction of the magnetic field enhance the whistler mode growth considerably if the streaming velocity is small compared to the phase velocity of the wave. It is likely that this is one of the mechanisms explaining the intense VLF emissions observed near the plasmapause during substorm activity.  相似文献   

18.
Comparison of the low altitude polar orbiting Injun 5 Satellite data with the ground VLF data has revealed that there is a definite scarcity of VLF/ELF emissions at the ground level compared with the extent to which they are present at or above the auroral altitudes. Reasons for this have been investigated by performing ray path computations for whistler mode VLF propagation in an inhomogeneous and anisotropic medium, such as the magnetosphere and the ionosphere. Based on wave normal computations in the lower ionosphere, it has been found that many of the near-auroral zone VLF/ELF events are frequently either reflected from, or heavily attenuated in, the lower ionosphere. Besides collisional loss, severe attenuation of VLF signals in the lower ionosphere is also caused by the divergence of ray paths from the vertical (spatial attenuation). Cone of wave normal angles for the wave, within which VLF/ ELF signals are permitted to reach the ground, has been established. Wave normals lying outside this transmission cone are reflected from the lower ionosphere and do not find exit to the Earth-ionosphere cavity. Computations for VLF signals produced at auroral zone distances in the equatorial plane of the magnetosphere indicates that these signals are more or less trapped in the magnetosphere at altitudes > 1RE.  相似文献   

19.
It is shown that a two-dimensional lower-hybrid wave structure can parametrically trigger the growth of VLF and ULF noises in a plasma. Analytical expressions for the increment and threshold of the instability are obtained. Application of our work to the auroral zones of the topside ionosphere is discussed.  相似文献   

20.
Intensities of auroral hiss generated by the Cerenkov radiation process by electrons in the lower magnetosphere are calculated with respect to a realistic model of the Earth's magnetosphere. In this calculation, the magnetic field is expressed by the “Mead-Fairfield Model” (1975), and a static model of the iono-magnetospheric plasma distribution is constructed with data accumulated by recent satellites (Alouette-I, -II, ISIS-I, OGO-4, -6 and Explorer 22). The energy range of hiss producing electrons and the frequency range of the calculated VLF are 100–200 keV, and 2–200 kHz, respectively. Intensities with a maximum around 20 kHz, of the order of 10?14 W/m2/Hz1 at the ground seem to be ascribable to the incoherent Cerenkov emission from soft electrons with a differential energy spectrum E?2 having an intensity of the order of 108cm?2/sec/sr/eV at 100 eV. It is shown that the frequency of the maximum hiss spectral density at geomagnetic latitudes 80° on the day-side and 70° on the night-side is around 20 kHz for the soft spectrum (~E?2) electrons, which shifts toward lower frequency (~10 kHz) for a hard spectrum (~E?1·2) electrons. The maximum hiss intensity produced by soft electrons is more than one order higher than that of hard electron produced hiss. The higher rate of hiss occurrence in the daytime side, particularly in the soft electron precipitation zone in the morning sector, and the lesser occurrence of auroral hiss in night-time sectors must be, therefore, due to the local time dependence of the energy spectra of precipiating electrons rather than the difference in the geomagnetic field and in the geoplasma distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号