首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The configuration of the magnetotail magnetic field has been calculated for a situation where a disruption of a portion of the tail current system develops. The decrease of the current in a localized region of the magnetotail leads to a collapse of the magnetic field in that vicinity. The calculated configuration of the field resembles what is predicted by reconnection models with the field lines moving toward the neutral sheet and then connecting and either moving toward or away from the earth. Associated with this changing magnetic field there is an induced electric field which will then influence the motion of the plasma in the magnetotail via E × B drifts.When the current from Xsm = ?20 to ?40 RE in the tail is decreasing with a tune-constant of 0.5 h the electric field produced, which is primarily westward, has a maximum value of 0.83 mV m?1 and produces plasma sheet thinning velocities of 0.3 km s?1. Higher velocities result for more rapid rates of current decrease, and they agree well with experimental observations. The plasma flows in the sunward direction are, however, much smaller than what has been observed. This is due in part to the inability of the magnetic field model to adequately represent the magnetic field in the immediate vicinity of the neutral sheet. Use of an improved model would give better agreement with the observations.The calculations show that the induced electric field of a time-dependent magnetic field is able to explain certain observed features of the plasma sheet motions. Also, this agreement suggests that the assumption that there is no charge separation contribution to the electric field may be reasonable during situations of large scale and rapid current disruptions in the magnetotail.  相似文献   

2.
3.
4.
We consider the process of flux tubes straightening in the Venus magnetotail on the basis of MHD model. We estimate the distance x t, where flux tubes are fully straightened due to the magnetic tension and the magnetotail with the characteristic geometry of field lines (“slingshot” geometry) ends. We investigate the influence of the transversal current sheet scale on the process of flux tubes straightening. The assumption of a thin current sheet allows to obtain a lower estimate of the magnetotail length, x t > 31R V (R V is the Venus radius), while the assumption of a broad current sheet allows to obtain an upper estimate, x t < 44R V. We show that kinetic effects associated with the losses of particles with small pitch angles from the flux tube and the influx of magnetosheath plasma into the flux tube do not significantly affect the estimate of the magnetotail length. The model predicts the existence of energetic fluxes of protons H+ (2–5 keV) and oxygen ions O+ (35–80 keV) in the distant tail. We discuss the magnetotail structure at x > x t.  相似文献   

5.
Low-energy particle trajectories in an idealized magnetotail magnetic field are investigated to determine the accessibility of magnetosheath protons and electrons to the plasma sheet along the flanks of the tail magnetopause. The drift motion of the positively (negatively) charged particles incident on the dawn (dusk) magnetotail flank causes such particles to penetrate deeper into the magnetotail. For certain combinations of particle energy, incident velocity vector and initial penetration point on the tail magnetopause, the incident particles can become trapped in the plasma sheet, after which their net drift motion then provides a current capable of supporting the entire observed magnetotail field. The results further indicate that the bulk of the solar wind plasma just outside the distant tail boundary, which streams preferentially in a direction along the magnetopause away from the Earth at velocities around 400 km s?1, can be caught up in the tail if the initial penetration point is within about 2RE, of the quasi-neutral sheet. It is suggested that a large fraction of the magnetotail plasma is composed of former solar wind particles which have penetrated the magnetospheric boundary at the tail flanks.  相似文献   

6.
We have modeled the magnetosphere by superimposing a dipole field, a uniform field and a perturbation field due to a simple current system. This current system consists of a ring current in the neutral line of the dipole plus uniform fields, together with vertical currents representing field-aligned currents to the neutral line. The current circuit is closed by two additional ring currents above and below the equatorial plane representing distributed adiabatic perpendicular currents. This system produces many magnetospheric features including a magnetopause, bending of magnetic field lines in the anti-solar direction, a magnetotail, and cusps on the day-side of the Earth. Our aim is to demonstrate that it is not necessary to think of the magnetic field topology as being caused by the flowing plasma carrying field lines. The fundamental physical problem is to derive the current system from the self-consistent interaction of the solar-wind and magnetospheric plasmas and fields.  相似文献   

7.
It is suggested that the quiet day daily magnetic variation in the polar cap region, Sqp, results partly from the short-circuit effect of the magnetotail current by the polar ionosphere. This implies that there is an inward field-aligned current from the dawnside magnetopause to the forenoon sector of the auroral oval (positively charged) and an outward field-aligned current to the duskside magnetopause from the afternoon sector of the oval (negatively charged), together with the ionospheric (Pedersen and Hall) currents. The distribution of the magnetic field vectors of both combined current systems agrees with the observed Sqpvector distribution. The space charges provide an electric field distribution which is similar to that which has been observed by polar orbiting satellites.  相似文献   

8.
In the mid-latitude E-region, the wind-shear mechanism produces thin ionized layers at levels where the vertical ion velocity is zero. We show that such layers conduct electric current only towards the magnetic equator, and not in the zonal direction. We surmise that this property may influence the electric field distribution in the nocturnal ionosphere, and possibly also the coupling between ion drifts and neutral air winds in the F-region. Detailed case studies of nocturnal layers located near the peak of ion Pedersen conductivity (around 130km) are needed to test this idea.  相似文献   

9.
The current sheet in Earth’s magnetotail often flaps, and the flapping waves could be induced propagating towards the dawn and dusk flanks, which could make the current sheet dynamic. To explore the dynamic characteristics of current sheet associated with the flapping motion holistically and provide reasonable physical interpretations, detailed direct calculation and analysis have been applied to one approximate analytic model of magnetic field in the flapping current sheet. The main results from the model demonstrate: (1) the magnetic fluctuation amplitude is attenuated from the center of current sheet to the lobe regions; The larger wave amplitude would induce the larger magnetic amplitude; (2) the curvature of magnetic field lines (MFLs), with maximum at the center of current sheet, is only dependent on the displacement Z along the south-north direction from the center of current sheet, regardless of the tilt of current sheet; (3) the half-thickness of neutral sheet, h, the minimum curvature radius of MFLs, Rcmin, and the tilt angle of current sheet, δ, satisfies h=Rcmin cos δ; (4) the gradient of magnetic strength forms a double-peak profile, and the peak value would be more intense if the local current sheet is more tilted; (5) current density j and its jy, jz components reach the extremum at the center of CS. j and jz would be more intense if the local current sheet is more tilted, but it is not the case for jy; and (6) the field-aligned component of current density mainly appears in the neutral sheet, and the sign of it would change alternatively as the flapping waves passing by. To check the validity of the model, one simulation on the virtual measurements has been made, and the results are in well consistence with actual observations of Cluster.  相似文献   

10.
In the forward part of the magnetosphere the distant tail current system approximates a magnetic quadrupole composed of two distorted adjacent solenoids. The current in the neutral sheet at this distance is accurately approximated as an infinitesimally thin current sheet. We have calculated the magnetic field near the Earth by integrating over the entire tail current system assuming the magnetotail is a cylinder of constant radius and that the tail current decreases with distance into the tail as |x|?13. The field is then represented by a scalar potential expanded into spherical harmonics which may be conveniently added to the spherical harmonic expansion of the scalar potential representing the magnetopause current system.  相似文献   

11.
For more than a decade there has been growing conviction that the burst of energy from a solar flare is first stored in magnetic fields and is then released rapidly by magnetic field annihilation (magnetic merging). There has also been recognition that magnetic merging may be responsible for the energy release manifested in auroral phenomena at the Earth. The most substantial evidence that magnetic merging does indeed occur in the Earth's magnetosphere and causes the auroral phenomena is provided by recent observations, in the magnetotail, of very rapid (500 km s–1) tailward, then earthward, flow of plasma during magnetospheric substorms. The observations, made with the Vela and IMP satellites, reveal also that the component of the tail magnetic field perpendicular to the tail neutral sheet changes polarity at the time of the reversal of plasma flow. These features are interpreted as indicative of passage of a magnetic neutral line, at which magnetic merging is proceeding, past the observing satellite. This paper describes an example of such observations made with IMP 6. It is anticipated that such systematic measurements of the plasma, energetic particles and magnetic field in the neighborhood of the passing neutral line on many such occasions will provide a general understanding of the magnetic merging process which can then be applied to studies of solar flares and other astrophysical phenomena.Work performed under the auspices of the U.S. Energy Research and Development Administration.  相似文献   

12.
We here investigate the motion of particles in a dipole magnetic field under the assumption of conservation of the first two adiabatic invariants. The results are then combined with Liouville's theorem to obtain the variation of the distribution function, and hence the plasma bulk parameters with L-shell. A comparison of the numerical results with recently published analytical approximations is made. Finally, the results are used to describe the structure of the ring current plasma in the outer radiatoin zone, the effects of the Alfvén layers being quantitatively evaluated for a simple electric field model.  相似文献   

13.
We use the fully coupled, three-dimensional, global circulation Jovian Ionospheric Model (JIM) to calculate the coupling between ions in the jovian auroral ovals and the co-existing neutral atmosphere. The model shows that ions subject to drift motion around the auroral oval, as a result of the E×B coupling between a meridional, equatorward electric field and the jovian magnetic field, generate neutral winds in the planetary frame of reference. Unconstrained by the magnetic field, these neutral winds have a greater latitudinal extent than the corresponding ion drifts. Values of the coupling coefficient, k(h), are presented as a function of altitude and cross-auroral electric field strength, for different incoming electron fluxes and energies. The results show that, with ion velocities of several hundred metres per second to over 1 km s−1, k(h) can attain values greater than 0.5 at the ion production peak. This parameter is key to calculating the effective conductivities required to model magnetosphere-ionosphere coupling correctly. The extent to which angular momentum (and therefore energy) is transported vertically in JIM is much more limited than earlier, one-dimensional, studies have predicted.  相似文献   

14.
We employ Mariner 10 measurements of the interplanetary magnetic field in the vicinity of Mercury to estimate the rate of magnetic reconnection between the interplanetary magnetic field and the Hermean magnetosphere. We derive a time-series of the open magnetic flux in Mercury's magnetosphere, from which we can deduce the length of the magnetotail. The length of the magnetotail is shown to be highly variable, with open field lines stretching between 15RH and 850RH downstream of the planet (median 150RH). Scaling laws allow the tail length at perihelion to be deduced from the aphelion Mariner 10 observations.  相似文献   

15.
The magnetic fields produced by a three-dimensional current system, consisting of a flow into the morning part of the auroral oval along tail-like field lines, along the auroral oval and out from the evening part of the oval along tail-like field lines, are computed. It is demonstrated that the major parts of the well-known ‘positive bay’ in low latitudes on the Earth's surface, the positive H variation at the synchronous distance and the positive Bs variation along the magnetotail during magnetospheric substorms can be caused by the proposed current system.  相似文献   

16.
We model solar coronal mass ejections (CMEs) as expanding force-free magnetic structures and find the self-similar dynamics of configurations with spatially constant ??, where J=?? B, in spherical and cylindrical geometries, expanding spheromaks and Lundquist fields, respectively. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, caused by inductive electric fields. The structure depends only on overall radius R(t) and rate of expansion $\dot{R}(t)$ measured at a given moment, and thus is applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, magnetic flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.  相似文献   

17.
By the test particle method, we have investigated the kinematic characteristics of the electrons in the reconnecting current sheet with a guiding magnetic field Bz after they are accelerated by the supper-Dreicer electric field Ez. Firstly, the influence of the guiding magnetic field Bz on the particle acceleration is discussed under the assumption that Bz is constant in magnitude but different in orientation with respect to the electric field. In this case, the variation of the Bz direction directly leads to the variation of electron trajectories and makes electrons leave the current sheet along different paths. If Bz is parallel to Ez, the pitch angles of the accelerated electrons are close to 180°. If Bz is anti-parallel to Ez, the pitch angles of the accelerated electrons are close to 0°. The orientation of the guiding magnetic field just makes the electric field accelerate selectively the electrons in different regions, but does not change the energy distribution of electrons, and the finally derived energy spectrum is the common power-law spectrum E. In typical coronal conditions, γ is about 2.9. The further study indicates that the magnitude of γ depends on the strengths of the guiding magnetic field and reconnecting electric field, as well as the scale of the current sheet. Then, the kinematic characteristics of the accelerated electrons in the current sheet with multiple X-points and O-points are also studied. The result indicates that the existences of the X-points and O-points have the particles constrained in the accelerating region to obtain the maximum acceleration, and the final energy spectrum has the characteristics of multi-power law spectra.  相似文献   

18.
The relationship between the relativistic electron bursts (0.3 ~ 1.0 MeV) observed in the magnetotail at X = ?20 ~ ?30 Re and the evolution of the structure of the magnetotail during substorms is investigated. It is found that the majority of the relativistic electron bursts are associated with the substorm activity and occurs inside the plasma sheet at the time of the local BZ-southward turning. It is suggested that these electrons are accelerated at the neutral line and trapped in the magnetic loop structure.  相似文献   

19.
The effects of the orientation of the interplanetary magnetic field (IMF) on the structure of the distant magnetotail are studied by superposing a uniform magnetic field on a magnetospheric model. It is shown that a southward component of the IMF alone can reduce the closed field region in the magnetotail, while a northward turning of the IMF can produce a new closed field region. It is suggested that these two effects can explain thinning and thickening, respectively, of the plasma sheet during magnetospheric substorms without invoking internal instabilities.  相似文献   

20.
The model of a magnetized rotating neutron star with an electric current in the region of its fluid polar magnetic caps is considered. The presence of an electric current leads to differential rotation of the magnetic caps. The rotation structure is determined by the electric current density distribution over the surface. In the simplest axisymmetric configuration, the current flows in one direction near the polar cap center and in the opposite direction in the outer ring (the total current is zero for the neutron star charge conservation). In this case, two rings with opposite directions of rotation appear on the neutron star surface, with the inner ring always lagging behind the star’s main rotation. The differential rotation velocity is directly proportional to the electric current density gradient along the polar cap radius. At a width of the region of change in the electric current from 1 to 102 cm and a period ~1 s and a magnetic field B ~ 1012 G typical of radio pulsars, the linear differential rotation velocity is ~10?2–10?4 cm s?1 (corresponding to a revolution time of ~0.1–10 yr).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号