首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On many of its passes through the Io torus the Galileo spacecraft has detected the presence of what appear to be thin magnetic flux tubes with fields somewhat higher than their surroundings. On these flux tubes the magnetic pressure is sufficiently above the pressure of neighboring tubes that it is possible the plasma contributions to the pressure within these tubes are depleted. Due to their short duration, they are only detectable in high time-resolution magnetometer data. Herein we survey all high time-resolution data that are available over the full Galileo mission and present a final statistical study. These tubes occupy 0.32% of the torus outside the orbit of Io. None are found inside. Their strength indicates that the ratio of the thermal pressure to magnetic pressure in the outer torus is about 2%. Comparison of the observed electron density in the neighborhood of these tubes indicates that the ion temperature is in the range 30-100 eV, consistent with other estimates. The amount of magnetic flux transported by these thin tubes could supply the amount of magnetic flux mass-loaded and transported to the magnetotail if the inward velocity is about 300 times that of the outward transport. Finally, the thin flux tubes are found in clusters, as they would occur if they resulted from the breakup of larger flux tubes.  相似文献   

2.
Zhang  Jun  Wang  Jingxiu 《Solar physics》1999,188(1):59-72
We have investigated the influence of stationary velocity fields, twists of the field lines and changes of gas pressure within flux tubes on the interchange instability of magnetic flux tubes. A small flux tube is found to be stable. All three factors mentioned above can stabilize tubes with all fluxes. We estimate that, for the solar case, a change of gas pressure in flux tubes plays an important role in stabilizing magnetic flux tube.  相似文献   

3.
Dynamic behavior of the coupled ionosphere-protonosphere system in the magnetospheric convection electric field has been theoretically studied for two plasmasphere models. In the first model, it is assumed that the whole plasmasphere is in equilibrium with the underlying ionosphere in a diurnal average sense. The result for this model shows that the plasma flow between the ionosphere and the protonosphere is strongly affected by the convection electric field as a result of changes in the volume of magnetic flux tubes associated with the convective cross-L motion. Since the convection electric field is assumed to be directed from dawn to dusk, magnetic flux tubes expand on the dusk side and contract on the dawn side when rotating around the earth. The expansion of magnetic flux tubes on the dusk side causes the enhancement of the upward H+ flow, whereas the contraction on the dawn side causes the enhancement of the downward H+ flow. Consequently, the H+ density decreases on the dusk side and increases on the dawn side. It is also found that significant latitudinal variations in the ionospheric structures result from the L-dependency of these effects. In particular, the H+ density at 1000 km level becomes very low in the region of the plasmasphere bulge on the dusk side. In the second model, it is assumed that the outer portion of the plasmasphere is in the recovery state after depletions during geomagnetically disturbed periods. The result for this model shows that the upward H+ flux increases with latitude and consequently the H+ density decreases with latitude in the region of the outer plasmasphere. In summary, the present theoretical study provides a basis for comparison between the equatorial plasmapause and the trough features in the topside ionosphere.  相似文献   

4.
The effect of collisions on electrostatic instabilities driven by gravity and density gradients perpendicular to the ambient magnetic field is studied. Electron collisions tend to stabilize the short wavelength (ky?i ? 1, where ky is the perpendicular wavenumber of the instability and ?i is the ion Larmor radius) kinetic interchange mode. In the presence of weak ion-ion collisions, this mode gets converted into an unmagnetized ion interchange mode which has maximum growth rate one order smaller than that of the collisionless mode. On the other hand, electron collisions can excite a long wavelength resistive interchange mode in a wide wavenumber regime (10?3 ? ky ?i ? 0.3) with growth rates comparable to that of the collisional Rayleigh-Taylor mode. The results may be relevant to some of the spread F irregularities.  相似文献   

5.
Additional studies of the ion composition results obtained from the OGO-6 satellite support earlier observations of irregularities in the distribution of H+ and He+ within the light ion trough near L = 4, which has been associated with the plasmapause. These irregularities are in the form of sub-troughs superimposed upon the major mid latitude decrease of the light ions. In the sub-troughs, ionization depletions and recoveries of as much as an order of magnitude are observed within a few degrees of latitude, usually exhibited in a pattern which changes significantly with longitude as the Earth rotates beneath the relatively fixed satellite orbit. The location and properties exhibited by these sub-troughs appear to be consistent with the concept of a plasmasphere distortion in the form of “plasmatails” resulting from the combined effects of magnetospheric convection plus corotation. Like the light ion trough, the “plasmatail” irregularity in H+ may be obscured on the day side by the dominant topside distribution of O+. Consequently, these light ion irregularities are seen as an important factor for studies of plasmapause-trough relationships.  相似文献   

6.
Recent satellite observations of thermal ion composition in the near-equatorial plasmasphere have shown that He+ comprises 5–10% typically and occasionally 25% or more of the total thermal ion density. A steady state diffusive equilibrium model for the distributions of H+, He+ and O+ along a plasmaspheric flux tube is used to elicit effects that may help explain these observed high He+ fractional concentrations. The model indicates that both the ionospheric composition and the temperature distribution along the flux tubes are important factors controlling the equatorial He+ composition, through the plasma scale height and thermal diffusion effects. Direct comparison of the model results with thermal ion observations by ISEE-1 indicates that the effects incorporated into the model may explain some of the elevated He+ concentrations. In some instances, however, effects not included in the model may also be of importance.  相似文献   

7.
Mcllwain's electric and magnetic field distributions (E3H and M2) have been used to calculate the drift path of plasma density irregularities taking into account plasma interchange motion driven by the gravitational and inertial forces acting on the whole mass of the plasma elements.It has been shown that there is a region in the magnetosphere which is unstable with respect to the interchange motion of the cold plasma element. Any plasma hole in the background density drifts ultimately toward an asymptotic trajectory. Along this trajectory the inward gravitational force is balanced by the outward inertial force averaged over one revolution around the Earth. This asymptotic trajectory, along which all plasma holes ultimately accumulate, is identified with the equatorial plasmapause. The maximum velocity for the interchange motion is proportional to the excess (or defect) of density in the plasma element, and inversely proportional to the integrated Pedersen conductivity. Plasma detachment is shown to occur preferentially in the post-midnight sector.  相似文献   

8.
It is argued that there is a terrestrial loss of hydrogen as ions which includes the polar wind but extends effectively down to a latitude in the range 45–50° invariant. In daytime and for much of the night-time the flux is close to the limiting value for H+ flow through the topside ionosphere. It is argued that the flux decreases rapidly with increasing solar activity, following the decrease in neutral hydrogen concentration. It has been found that as solar activity increases the Jeans escape flux increases, and the charge exchange escape flux increases until moderate solar activity levels are reached. As solar activity increases from moderate to high levels, the charge exchange escape may decrease again. A new budget for terrestrial hydrogen loss over the solar cycle is given. The global flux of hydrogen ions outward from the ionosphere is comparable with estimates of the plasma sheet loss rates, and this flux, together with some solar wind plasma, is an attractive source for the plasma sheet.The energetic neutrals produced from the charge exchange of ring current ions with thermal-energy neutrals in the exosphere produce the optical emission of the equatorial aurora, which can be related to ion production rates near and above the E-region. The ionization production is adequate to explain the enhancements in ion production observed during magnetic storms at Arecibo.  相似文献   

9.
Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we extend the analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer-belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfvén waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly open fieldlines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high-frequency component associated with the current sheet/reconnection site and an extended low-frequency component associated with the large-scale torsional Alfvén wave generated from the interchange reconnection field restructuring. The characteristic wavelengths of the torsional Alfvén wave reflect the spatial size of the energized bipolar flux region. Lastly, we discuss avenues of future research by modeling these interchange reconnection-driven waves and investigating their observational signatures.  相似文献   

10.
A theory of whistler duct formation is presented. By means of order of magnitude calculations it is shown that, when the ring current overlaps the outer plasmasphere, irregularities will cause field-aligned currents to flow, which are below the threshold sensitivity of satellite-borne magnetometers. These currents must be continuous with horizontal ionospheric currents, which produce horizontal electric fields. These fields map up to the equatorial plane and are large enough to produce flux tube interchange and hence the formation of whistler ducts in the outer plasmasphere.  相似文献   

11.
The structure of the photospheric magnetic field during solar flares is examined using echelle spectropolarimetric observations. The study is based on several Fe i and Cr i lines observed at locations corresponding to brightest Hα emission during thermal phase of flares. The analysis is performed by comparing magnetic-field values deduced from lines with different magnetic sensitivities, as well as by examining the fine structure of I±V Stokes-profiles’ splitting. It is shown that the field has at least two components, with stronger unresolved flux tubes embedded in weaker ambient field. Based on a two-component magnetic-field model, we compare observed and synthetic line profiles and show that the field strength in small-scale flux tubes is about 2?–?3 kG. Furthermore, we find that the small-scale flux tubes are associated with flare emission, which may have implications for flare phenomenology.  相似文献   

12.
Satellite and other observations have shown that H+ densities in the mid-latitude topside ionosphere are greatly reduced during magnetic storms when the plasmapause and magnetic field convection move to relatively low L-values. In the recovery phase of the magnetic storm the convection region moves to higher L-values and replenishment of H+ in the empty magnetospheric field tubes begins. The upwards flow of H+, which arises from O+—H charge exchange, is initially supersonic. However, as the field tubes fill with plasma, a shock front moves downwards towards the ionosphere, eventually converting the upwards flow to subsonic speeds. The duration of this supersonic recovery depends strongly on the volume of the field tube; for example calculations indicate that for L = 5 the time is approximately 22 hours. The subsonic flow continues until diffusive equilibrium is reached or a new magnetic storm begins. Calculations of the density and flux profiles expected during the subsonic phase of the recovery show that diffusive equilibrium is still not reached after an elapsed time of 10 days and correspondingly there is still a net loss of plasma from the ionosphere to the magnetosphere at that time. This slow recovery of the H+ density and flux patterns, following magnetic storms, indicates that the mid-latitude topside ionosphere may be in a continual dynamic state if the storms occur sufficiently often.  相似文献   

13.
M. A. Weber  Y. Fan  M. S. Miesch 《Solar physics》2013,287(1-2):239-263
We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1° to 40° in both hemispheres. This article expands upon Weber, Fan, and Miesch (Astrophys. J. 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 1020 Mx and 1021 Mx, and more simulations of the previously investigated case of 1022 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy’s Law as in Article 1, and in addition the scatter of tilt angles about the Joy’s Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active-region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of ≥?40 kG are good candidates for the progenitors of large (1021 Mx to 1022 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 1022 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy’s Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.  相似文献   

14.
The sub-iron-iron flux ratio in cosmic rays at an atmospheric depth of 9.8 g cm–2 has been estimated using a balloon-borne CR-39 (HCB) stack launched from Alice Springs for 32 hours. The recovered and chemically etched plates were analysed optically and the measured etch pit diameters yielded the sub-iron-iron flux ratio at the flight altitude. The sub-iron-iron flux ratio has been corrected for the top of the atmosphere by considering the loss of heavy ions due to nuclear interaction and fragmentation. The present result has been compared with the result expected from the source composition derived by Protheroeet al. as well as other authors.  相似文献   

15.
We consider the process of flux tubes straightening in the Venus magnetotail on the basis of MHD model. We estimate the distance x t, where flux tubes are fully straightened due to the magnetic tension and the magnetotail with the characteristic geometry of field lines (“slingshot” geometry) ends. We investigate the influence of the transversal current sheet scale on the process of flux tubes straightening. The assumption of a thin current sheet allows to obtain a lower estimate of the magnetotail length, x t > 31R V (R V is the Venus radius), while the assumption of a broad current sheet allows to obtain an upper estimate, x t < 44R V. We show that kinetic effects associated with the losses of particles with small pitch angles from the flux tube and the influx of magnetosheath plasma into the flux tube do not significantly affect the estimate of the magnetotail length. The model predicts the existence of energetic fluxes of protons H+ (2–5 keV) and oxygen ions O+ (35–80 keV) in the distant tail. We discuss the magnetotail structure at x > x t.  相似文献   

16.
Kleimann  Jens  Hornig  Gunnar 《Solar physics》2001,200(1-2):47-62
Magnetic flux tubes reaching from the solar convectivezone into the chromosphere have to pass through the relatively cool, and therefore non-ideal (i.e. resistive) photospheric region enclosed between the highly ideal sub-photospheric and chromospheric plasma. It is shown that stationary MHD equilibria of magnetic flux tubes which pass through this region require an inflow of photospheric material into the flux tube and a deviation from iso-rotation along the tube axis. This means that there is a difference in angular velocity of the plasma flow inside the tube below and above the non-ideal region. Both effects increase with decreasing cross section of the tube. Although for characteristic parameters of thick flux tubes the effect is negligible, a scaling law indicates its importance for small-scale structures. The relevance of this `inflow effect' for the expansion of flux tubes above the photosphere is discussed.  相似文献   

17.
A mathematical model has been developed to calculate consistent values for the O+ and H+ concentrations and field-aligned velocities and for the O+, H+ and electron temperatures in the night-time equatorial topside ionosphere. Using the results of the model calculations a study is made to establish the ability of F-region neutral air winds to produce observed ion temperature distributions and to investigate the characteristics of ion temperature troughs as functions of altitude, latitude and ionospheric composition. Solar activity conditions that give exospheric neutral gas temperatures 600 K, 800 K and 1000 K are considered.It is shown that the O+-H+ transition height represents an altitude limit above which ion cooling due to adiabatic expansion of the plasma is extremely small. The neutral atmosphere imposes a lower altitude limit since the neutral atmosphere quenches any ion cooling which field-aligned transport tends to produce. The northern and southern edges of the ion temperature troughs are shown to be restricted to a range of dip latitudes, the limiting dip latitudes being determined by the magnetic field line geometry and by the functional form of the F-region neutral air wind velocity. Both these parameters considerably influence the interaction between the neutral air and the plasma within magnetic flux tubes.  相似文献   

18.
K. Daiffallah 《Solar physics》2014,289(3):745-758
Motivated by the question of how to distinguish seismically between monolithic and cluster models of sunspots, we have simulated the propagation of an f-mode wave packet through two identical small magnetic flux tubes (R=200 km), embedded in a stratified atmosphere. We want to study the effect of separation d and incidence angle χ on the scattered wave. We have demonstrated that the horizontal compact pair of tubes (d/R=2, χ=0) oscillate as a single tube when the incident wave is propagating, which gives a scattered wave amplitude of about twice that from a single tube. The scattered amplitude decreases with increasing d when d is about λ/2π where λ is the wavelength of the incident wave packet. In this case the individual tubes start to oscillate separately in the manner of near-field scattering. When d is about twice λ/2π, scattering from individual tubes reaches the far-field regime, giving rise to coherent scattering with an amplitude similar to the case of the compact pair of tubes. For perpendicular incidence (χ=π/2), the tubes oscillate simultaneously with the incident wave packet. Moreover, simulations show that a compact cluster oscillates almost as a single individual small tube and acts more like a scattering object, while a loose cluster shows multiple-scattering in the near field and the absorption is largest when d within the cluster is about λ/2π. This is the first step to understand the seismic response of a bundle of magnetic flux tubes in the context of sunspot and plage helioseismology.  相似文献   

19.
Simultaneous measurements of keV ions and electrons with the ESRO 1A satellite have shown the following ion characteristics among others. Ions of about 6 keV energy are strongly field-aligned on the flanks of the inverted V events (mainly through the disappearance of the ion flux near 90° pitch angle). Field-aligned electron fluxes are often found in the same regions of the inverted V events where the ions are field-aligned. At the centre of inverted V events isotropization occurs (except in some small events). The 1 keV ion flux at large pitch angles (80°) is generally not reduced very much when the 6 keV, 80° ion flux shows strongly decreased values. The ratio of the 1 to 6 keV ion flux has a maximum near the centre of an inverted V event where the electron spectrum is hardest and the 6 keV ions are isotropic (or nearly isotropic).The observations are interpreted in terms of a model with two oppositely directed field-aligned electrostatic potential drops: one upper accelerating electrons downward and one lower, produced by the electron influx, which accelerates ions downward. Ion scattering in turbulent wave fields is proposed to be responsible for the observation that the 1 keV ion flux at large pitch angles does not decrease strongly where the 6 keV ion flux does and as an explanation of the isotropization at the centre of the event. The source problem for the ions is eliminated by the precipitating electrons ionizing continuously the thin neutral atmosphere even at altitudes of a few thousand kilometers.  相似文献   

20.
Sunspots are caused by the eruption of magnetic flux tubes through the solar photosphere: current theories of the internal magnetic field of the Sun suggest that such tubes must rise relatively unscathed from the base of the convection zone. In order to understand how the structure of the magnetic field within a buoyant flux tube affects its stability as it rises, we have considered the quasi-two-dimensional rise of isolated magnetic flux tubes through an adiabatically stratified atmosphere. The magnetic field is initially helical; we have investigated a range of initial field configurations, varying the distribution and strength of the twist of the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号