首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Xenoliths consisting of two thirds pyrope (Py73Alm14Gr13-Py15Alm18Gr31) and one third hercynite-bearing spinel with minor chromium, from Bellsbank and Jagersfontein kimberlites, South Africa, are compared with similar rocks, alkremites, from the Udachnaya pipe, U.S.S.R. From published experimental data and textural relationships these formed as early dense cumulates in aluminous mantle melts under restricted pressure conditions equivalent to about 75 km depth. At greater pressures very pyrope-rich garnets (Py80) are capable of being formed. The garnet spinel xenoliths are considered to have become separated from the magma prior to crystallisation of clinopyroxene, whereas complete uninterrupted fractionation and reaction would produce the more common griquaites (eclogites).  相似文献   

2.
Metabasites of the southern Ötztal basement hitherto mapped as amphibolites, were identified as eclogites. Primary mineral parageneses are tschermakitic to pargasitic green amphiboles, omphacite (Jd40), garnet II (Gr20–30) Py10), phengite (Si3.5), zoisite, rutile and quartz. Al—pargasite (20 wt% Al2O3) rims between garnet and omphacite are interpreted as retrograde reaction products.Retrogression of the eclogite parageneses reflecting decreasing pressure and increasing temperature conditions are: Symplectites of diopside and plagioclase after omphacite, Al-and Na-poor green amphiboles, grossularite-poor garnet III surrounding garnet II partly with atoll textures and symplectites of biotite and plagioclase replacing phengite. Continuation of retrogression with decreasing temperature conditions is indicated by actinolitic amphiboles and albite-rims between amphibole II and quartz.  相似文献   

3.
Pan‐African high‐pressure granulites occur as boudins and layers in the Lurio Belt in north‐eastern Mozambique, eastern Africa. Mafic granulites contain the mineral assemblage garnet + clinopyroxene + plagioclase + quartz ± magnesiohastingsite. Garnet porphyroblasts are zoned with increasing almandine and spessartine contents and decreasing grossular and pyrope contents from core (Alm46Prp32Grs21Sps2) to rim (Alm52Prp26Grs19Sps3). This pattern is interpreted as a retrograde diffusion zoning with the preserved core chemistry representing the peak metamorphic composition. Mineral reaction textures occur in the form of monomineralic and composite plagioclase ± orthopyroxene ± amphibole ± biotite ± magnetite coronas around garnet porphyroblasts. Thermobarometry indicates peak metamorphic conditions of up to 1.57 ± 0.14 GPa and 949 ± 92 °C (stage I), corresponding to crustal depths of ~55 km. Zircon yielded an U–Pb age of 557 ± 16 Ma, inferred to date crystallization of zircon during peak or immediately post‐peak metamorphism. Formation of plagioclase + orthopyroxene‐bearing coronas surrounding garnet indicates a near‐isothermal decompression of the high‐pressure granulites to lower pressure granulite facies conditions (stage II). Development of plagioclase + amphibole‐coronas enclosing the same garnet porphyroblasts shows subsequent cooling into amphibolite facies conditions (stage III). Symplectitic textures of the corona assemblages indicate rapid decompression. The high‐pressure granulite facies metamorphism of the Lurio Belt, followed by near‐isothermal decompression and subsequent cooling, is in accordance with a long‐lived tectonic history accompanied by high magmatic activity in the Lurio Belt during the late Neoproterozoic–early Palaeozoic East‐African–Antarctic orogeny.  相似文献   

4.
This paper presents the first report on the occurrence of eclogite from the Kumon range of the Western province in Myanmar, which is in the southeastern extension of the Himalayan orogenic belt. The eclogite is mainly composed of omphacite, garnet, hornblende/edenite/katophorite/taramite, biotite, quartz, and rutile. The garnet grains in the eclogite usually show textures of barrier reef, atoll, and table reef types, and have a wide compositional range of Alm58–70Sps1–2Prp9–16Grs14–31. Omphacite grains that occur as garnet inclusions and as isolated crystals in the matrix have similar compositions of Jd34–45 and Jd37–44, respectively. Lesser amounts of jadeitic clinopyroxene (Jd21–38), phengite, biotite, albite, and quartz occur in the lagoon of barrier reef and atoll garnet grains. The matrix omphacite is partly replaced by symplectite of sodic clinopyroxene of Jd20–29 and albite. The lower limits of the pressure/temperature during the eclogite stage, which are defined by the assemblage of garnet, omphacite (Jd40–45), and quartz, are 1.2–1.3 GPa/530–615 °C. The finding of eclogite from Myanmar suggests the possibility of a wide occurrence of high-pressure metamorphic rocks in the ophiolite zone along the southeastern extension of the Indus-Yarlung Zangbo suture in Myanmar and Indochina.  相似文献   

5.
The lower-crustal rocks of the Kohistan complex (northern Pakistan) are mostly composed of metabasic rocks such as pyroxene granulites, garnet granulites and amphibolites. We have investigated P–T trajectories of the relic two-pyroxene granulites, which are the protolith of the amphibolites within the Kamila amphibolite belt. Aluminous pyroxene retains igneous textures such as exsolution lamellae developed in the core. The significant amount of Al in clinopyroxene is buffered by breakdown reactions of plagioclase accompanied by film-like quartz as a product at grain boundaries between plagioclase and clinopyroxene. Distinct Al zoning profiles are preserved in pyroxene with exsolution lamellae in the core and in plagioclase adjacent to clinopyroxene in pyroxene granulites. In the northern part of the Kamila amphibolite belt, Al in clinopyroxene increases towards the rim and abruptly decreases at the outer rim, and anorthite in plagioclase decreases towards the rim and abruptly increases near the grain boundary between plagioclase and clinopyroxene. In the southern part of the Kamila amphibolite belt, Al in clinopyroxene and anorthite in plagioclase simply increase towards the margins of the grains. The anorthite zoning in plagioclase is in agreement with the zoning profiles of Ca-Tschermaks and jadeite components inferred from variations of Al, Na, Ti and Fe3+ in clinopyroxene. Assuming that the growth surface between them was in equilibrium, geothermobarometry based on Al zoning in clinopyroxene coexisting with plagioclase indicates that metamorphic pressures significantly increased with increasing temperature under granulite facies metamorphism. The peak of granulite facies metamorphism occurred at conditions of about 800 °C and 800–1100 MPa. These prograde P–T paths represent a crustal thickening process of the Kohistan arc during the Early to Middle Cretaceous. The crustal thickening of the Kohistan arc was caused by accretion of basaltic magma at mid-crustal depths.  相似文献   

6.
The in situ electrical conductivity of hydrous garnet samples (Py20Alm76Grs4–Py73Alm14Grs13) was determined at pressures of 1.0–4.0 GPa and temperatures of 873–1273 K in the YJ-3000t apparatus using a Solartron-1260 impedance/gain-phase analyzer for various chemical compositions and oxygen fugacities. The oxygen fugacity was controlled by five solid-state oxygen buffers (Fe2O3 + Fe3O4, Ni + NiO, Fe + Fe3O4, Fe + FeO, and Mo + MoO2). Experimental results indicate that within a frequency range from 10−2 to 106 Hz, electrical conductivity is strongly dependent on signal frequency. Electrical conductivity shows an Arrhenius increase with temperature. At 2.0 GPa, the electrical conductivity of anhydrous garnet single crystals with various chemical compositions (Py20Alm76Grs4, Py30Alm67Grs3, Py56Alm43Grs1, and Py73Alm14Grs13) decreases with increasing pyrope component (Py). With increasing oxygen fugacity, the electrical conductivity of dry Py73Alm14Grs13 garnet single crystal shows an increase, whereas that of a hydrous sample with 465 ppm water shows a decrease, both following a power law (exponents of 0.061 and −0.071, respectively). With increasing pressure, the electrical conductivity of this hydrous garnet increases, along with the pre-exponential factors, and the activation energy and activation volume of hydrous samples are 0.7731 ± 0.0041 eV and −1.4 ± 0.15 cm3/mol, respectively. The results show that small hopping polarons ( \textFe\textMg · ) \left( {{\text{Fe}}_{\text{Mg}}^{ \cdot } } \right) and protons ( \textH · {\text{H}}^{ \cdot } ) are the dominant conduction mechanisms for dry and wet garnet single crystals, respectively. Based on these results and the effective medium theory, we established the electrical conductivity of an eclogite model with different mineral contents at high temperatures and high pressures, thereby providing constraints on the inversion of field magnetotelluric sounding results in future studies.  相似文献   

7.
It is necessary to understand the mechanisms of disequilibrium reactions in metamorphic rocks in order to (1) model the rate of reaction in response to changing state variables during tectonic process, and (2) interpret the assemblages of natural disequilibrium samples in terms of tectonic history. A sample was selected from an area of known tectonic history to examine in detail and document the kinetics of reaction. The sample preserves evidence of the garnet granulite to gabbro transition.Orthopyroxene and anorthite coronas around garnet and orthopyroxene rims around clinopyroxene are textural observations suggesting the overall reaction: garnet+clinopyroxene+quartz+plagioclase(matrix) orthopyroxene+ anorthite (corona). The disequilibrium nature of reaction is evident from compositional zoning of garnet, some zoning of clinopyroxene, and difference between corona anorthite (An90) and matrix plagioclase (An35).Several texturally-distinguished microenvironments in a single thin section were investigated to determine how components were redistributed during reaction; T and P are assumed to have been the same throughout. The compositional data are best explained by a partial equilibrium model in which orthopyroxene, garnet rims, Fe-rich clinopyroxene, and a hypothetical intergranular fluid approach equilibrium and are not in equilibrium with reactant garnet cores and matrix plagioclase. Corona texture suggests that intergranular diffusion had some effect but the composition data indicate that it was not rate-limiting. The fact that garnet rim compositions are nearly in equilibrium with product phases (with respect to Mg-Fe partitioning) suggests that diffusion in garnet can be considered a rate-limiting reaction step. Combining the differential equation of zoning for this system with mass and volume balance equations of reaction enables one to predict the density change with time by numerical integration.I conclude that comparison of core compositions of zoned minerals in high-grade rocks is meaningful only if a compositional plateau is preserved that can be proven not to be altered by diffusion. Diffusion in pyroxene is apparently too fast at high grade to make relict pyroxenes useful tracers of metamorphic conditions. The rim composition of zoned phases depends on the relative rate of reaction and internal diffusion; the approach of the rim of a reactant phase to equilibrium with products is a measure of the degree to which intragranular diffusion is rate-limiting. In general, this work supports reaction models that assume that intergranular diffusion is rapid and that interface kinetics or intragranular diffusion are usually rate-limiting factors.Reactions controlled by diffusion in garnet are slow geologically. Tectonic hysteresis can be produced because garnet can form in granulite assemblages more rapidly than it is consumed with changing heat flow. The rate of gabbro-garnet granulite transition depends on whether plagioclase reacts by zoning or separate product grains nucleate.  相似文献   

8.
The metabasites of Chadegan, including eclogite, garnet amphibolite and amphibolite, are forming a part of Sanandaj–Sirjan Zone. These rocks have formed during the subduction of the Neo–Tethys ocean crust under Iranian plate. This subduction resulted in a subduction metamorphism under high pressuremedium temperature of eclogite and amphibolites facies condition. Then the metamorphic rocks were exhumed during the continental collision between the Afro–Arabian continent and the Iranian microcontinent. In the metabasite rocks, with typical MORB composition, garnet preserved a compositional zoning occurred during metamorphism. The magnesium (XMg) gradually increases from core to rim of garnets, while the manganese (XMn) decreases towards the rim. Chondrite–normalized Rare Earth Element patterns for these garnets exhibit core–to–rim increases in Light Rare Earth Elements. The chondrite–normalized REE patterns of garnets, amphiboles and pyroxenes display positive trend from LREEs to Heavy Rare Earth Elements (especially in garnet), which suggests the role of these minerals as the major controller of HREE distribution. The geochemical features show that the studied eclogite and associated rocks have a MORB origin, and probably formed in a deep–seated subduction channel environment. The geothermometry estimation yields average pressure of ~22 kbar and temperature of 470–520°C for eclogite fomation. The thermobarometry results gave T = 650–700°C and P ≈ 10–11 kbar for amphibolite facies.  相似文献   

9.
Compositional zonation in garnets in peridotite xenoliths   总被引:1,自引:0,他引:1  
Garnets in 42 peridotite xenoliths, most from southern Africa, have been analyzed by electron probe to seek correlations between compositional zonation and rock history. Xenoliths have been placed into the following 6 groups, based primarily upon zonation in garnet: I (12 rocks)-zonation dominated by enrichment of Ti and other incompatible elements in garnet rims; II (10 rocks)-garnet nearly homogeneous; III (8 rocks)-rims depleted in Cr, with little or no related zonation of Ti; IV (3 rocks)-slight Ti zonation sympathetic to that of Cr; V (3 rocks)-garnet rims depleted or enriched in Cr, and chromite included in garnet; VI (6 rocks)-garnets with other characteristics. Element partitioning between olivine, pyroxene, and garnet rims generally is consistent with the assumption of equilibrium before eruption. Although one analyzed rock contains olivine and pyroxene that may have non-equilibrated oxygen isotopes, no corresponding departures from chemical equilibrium were noted. Causes of zoning include melt infiltration and changes in temperature and pressure. Zonation was caused or heavily influenced by melt infiltration in garnets of Group I. In Groups III, IV, and V, most compositional gradients in garnets are attributed to changes in temperature, pressure, or both, and gradients of Cr are characteristic. There are no simple relationships among wt% Cr2O3 in garnet, calculated temperature, and the presence of compositional gradients. Rather, garnets nearly homogeneous in Cr are present in rocks with calculated equilibration temperatures that span the range 800–1500 °C. Although the most prominent Cr gradients are found in relatively Cr-rich garnets of rocks for which calculated temperatures are below 1050 °C, gradients are well-defined in a Group IV rock with T1300 °C. The variety of Cr gradients in garnets erupted from a range of temperatures indicates that the zonations record diverse histories. Petrologic histories have been investigated by simulated cooling of model rock compositions in the system CaO–MgO–Al2O3–SiO2–Cr2O3. Proportions and compositions of pyroxene and garnet were calculated as functions of P and T. The most common pattern of zonation in Groups III and IV, a decrease of less than 1 wt% Cr2O3 core-to-rim, can be simulated by cooling of less than 200 °C or pressure decreases of less than 1 GPa. The preservation of growth zonation in garnets with calculated temperatures near 1300 °C implies that these garnets grew within a geologically short time before eruption, probably in response to fast cooling after crystallization of a small intrusion nearby. Progress in interpreting garnet zonations in part will depend upon determinations of diffusion rates for Cr. Zonation formed by diffusion within garnet cannot always be distinguished from that formed by growth, but Ca–Cr correlations unlike those typical of peridotite suite garnets may document diffusion.  相似文献   

10.
A xenolith from the kimberlite pipe of the Roberts Victor Mine, O.F.S. shows a marginal rim rich in garnet (Py50Alm35Gro15), presumably resulting from reaction between the grospyditic inclusion and kimberlitic host. Similarity between the reaction rim-garnets, and those of the common mafic inclusion of the Roberts Victor pipe, suggests that the rare grospydite inclusions are accidental xenoliths, not directly related in origin to the kimberlites in which they are found.  相似文献   

11.
Sodic pyroxene (jadeite content X jd=0.1–0.3) occurs locally as small inclusions within, albite porphyroblasts and in the matrix of hematite-bearing quartz schists in the Sanbagawa (Sambagawa) metamorphic belt, central Shikoku, Japan. The sodic, pyroxene-bearing samples are characteristically free from chlorite and their typical mineral assemblage is sodic pyroxene+subcalcic (or sodic) amphibole+phengitic mica+albite+quartz+hematite+titanite±epidote. Spessartine-rich garnet occurs in Mn-rich samples. Sodic pyroxene in epidote-bearing samples tends to be poorer in acmite content (average X Acm=0.26–0.50) than that in the epidote-free samples (X Acm=0.45–0.47). X Jd shows no systematic relationship to metamorphic grade, and is different among the three sampling regions [Saruta-gawa, Asemi-gawa and Bessi (Besshi)]. The average X Jd of the Saruta-gawa samples (0.21–0.29) is higher than that of the Asemi-gawa (0.13–0.17) and Bessi (0.14–0.23). The P-T conditions of the Asemi-gawa and Bessi regions are estimated at 5.5–6.5 kbar, >360°C in the chlorite zone, 7–8.5 kbar, 440±15°C in the garnet zone and 8–9.5 kbar, 520±25°C in the albite-biotite zone. Metamorphic pressure of the Saruta-gawa region is systematically 1–1.5 kbar higher than that of the Asemi-gawa and Bessi regions, and materials of the Saruta-gawa region have been subducted to a level 3–5 km deeper than materials that underwent metamorphism at equivalent temperatures and are now exposed in the Asemi-gawa and Bessi regions. Pressure slightly increases toward the north (structurally high levels) through the Sanbagawa belt of central shikoku. Two types of zonal structure were observed in relatively coarse-grained sodic pyroxenes in the matrix. One type is characterized by increasing X Jd from core to rim, the other type by decreasing X Jd from core to rim. Both types of zoned pyroxenes show an increase in X Fe 2+[=Fe2+/(Fe2++Mg)] from core to rim. The first type of zoning was observed in a sample from the chlorite zone of lowest grade, whereas the latter occurs in the garnet and albite-biotite zones of higher grade. The contrast in zonal structure implies that dP/dT during prograde metamorphism decreased with increasing metamorphic grade and may have been negative in some samples from the higher-grade zones. The estimated dP/dT of the prograde stage of the chlorite zone is 3.2 kbar/100°C, and that of the garnet and albite-biotite zones is -1.8 to 0.9 kbar/100°C. The variation of dP/dT at shallow and deep levels of a subduction system probably reflects the difference of heating duration and/or change in thermal gradient of the subduction zone by continuous cooling of the surrounding mantle.  相似文献   

12.
Six kimberlite pipes of late Cretaceous or Tertiary age occur in Riley Co., east-central Kansas. Within the pipes xenoliths of local sedimentary and exotic igneous rocks are common, especially in the Stockdale pipe. Igneous rocks which occur as xenoliths include granite, gabbro, metagabbro, pyroxenite and eclogite. In the eclogites omphacitic clinopyroxene (approx. Di52Jd24mol%) and pyropic garnet (approx. Py47Al35Gr12mol%) are the predominant minerals with subordinate amounts of rutile and sulphides (pyrrotite-pentlandite (?)-chalcopyrite). Interstitial kaersutitic amphibole is a minor constituent. The eclogites are chemically equivalent to olivine-basalt. The texture, composition and mineralogy of the eclogites from Kansas are similar to those of eclogites from kimberlite pipes in South Africa and Siberia. Whereas the rocks from these latter localities display a range in composition, those examined to date from Kansas are of fairly restricted composition. Furthermore it seems probable that the eclogites from Stockdale formed under limited P-T conditions within the mantle. This is the first record of such eclogites on the North American continent.  相似文献   

13.
Eclogite of high‐pressure low‐temperature origin occurs within the Great Serpentine belt of New South Wales. The presence of glaucophane‐bearing rocks and other medium to high‐pressure assemblages associated with the belt is similar in many respects to the Californian and Oregon occurrences. The chemical composition of the eclogite is characterized by low K2O values comparable to many oceanic tholeiites, although one analysis is nepheline‐normative. Ti‐Zr‐Y ratios also show affinities to ocean‐floor basalts.

The garnet contains approximately 30% grossular and is strongly zoned from almandine (Alm 56%, Py 9%) at the core towards pyrope (Alm 44%, Py 27%) at the margin. Sodic augite contains 30–33% Jd, 4–7% Ac, and 72–74% Di+He.

Distribution of Fe and Mg between co‐existing garnet and pyroxene would suggest an increasing temperature during eclogite crystallization with a possible range from 290°C to 600°C and a minimum pressure of 7–12 kb.  相似文献   

14.
Feldspar chemical variations in representative leucite-bearing and related rocks from well-known localities in Italy, Germany, Uganda and Australia demonstrate that phenocrystal core to rim variations may not represent the feldspar crystallization trend in the host lava and only the groundmass feldspar zoning trend is a reliable indicator of crystal-liquid relationships. Textural relationships indicate that coexisting plagioclase and alkali feldspar crystallized sequentially, the latter after the former, rather than cotectically.Groundmass alkali feldspar show Ca-, Na-depletion and K-enrichment zoning trends. Plagioclase crystallization follows Ca-depletion, Na and K-enrichment trends. Typically, Sr and Ba solid solubility is significant, particularly in groundmass feldspar.The alkali feldspar variation trend from groundmass assemblages is not consistent with the theoretical phase relationships in the system NaAlSiO4-KAlSiO4 CaAl2Si2O8-SiO2 (The phonolite pentahedron) proposed by Carmichael et al. (1974).Factors believed to be important in controlling feldspar crystallization trends are the Sr-Ba feldspar components, the role of the coexisting pyroxene and the presence of F, Cl and/or their alkali compounds.  相似文献   

15.
The Tayuan (Cu–Mo)–Pb–Zn deposit is located in the northern part of Daxinganling, NE China. Lenticular ore body occurs in the skarn zone. The skarn minerals mainly include garnet, pyroxene, epidote and wollastonite. Electron microprobe analysis shows that the end member of garnet is mainly andradite (Ad62–97Gr11–45), the pyroxene is mainly diopside, and epidote is mainly clinozoisite. These characteristics indicate that the Tayuan polymetallic skarn deposit is mainly calcareous skarn. Sometimes the content zonation can be observed in garnets. With one garnet crystal, content is shifty from the core to the rim. In general, the iron content in the core is higher than in the edge. The content in the garnet shows that the garnet in the Tayuan deposit formed from weak oxidation in alkaline environment with the oxygen fugacity increasing, suggesting that the hydrothermal fluid evolved from an acidic to a slight alkaline state. In the Tayuan polymetallic deposit, the ratio of Mn/Fe in pyroxene is about 1.3, and of Mg/Fe, it is about 2. The components of garnet in the Tayuan deposit plot in the field of the typical skarn Zn, Cu, Mo deposits in the world.  相似文献   

16.
An automated method for the calculation of P–T paths based on garnet zoning is presented and used to interpret zoning in metapelitic schist from the southern Canadian Cordillera. The approach adopted to reconstruct the P–T path is to match garnet compositions along a radial transect with predictions from thermodynamic forward models, while iteratively modifying the composition to account for fractional crystallization. The method is applied to a representative sample of garnet‐ and staurolite‐bearing schist from an amphibolite facies Barrovian belt in the southern Canadian Omineca belt. Garnet zoning in these schists is concentric and largely continuous from core to rim. Three zones are present, the first two of which coincide with sector‐zoned cores of garnet crystals. Similar zoning is developed in rocks that contain or lack staurolite, respectively, suggesting garnet growth was restricted to the initial part of the prograde P–T path prior to the development of staurolite. Growth zoning in large garnet crystals has not been significantly modified by diffusion. This interpretation is based on zoning characteristics of garnet crystals and is further supported by results of a forward model incorporating the effects of simultaneous fractional crystallization and intracrystalline diffusion. The P–T path calculated for this rock includes an initial, linear stage with a high dP/dT, and a later stage dominated by heating. The approach adopted in this study may have application to other garnet‐bearing rocks in which growth zoning is preserved.  相似文献   

17.
A regional study of olivine-bearing metagabbros in the Adirondacks has permitted testing of the P(pressure)-T(temperature)-X(composition) dependence of garnet-forming reactions as well as providing additional regional metamorphic pressure data. Six phases, olivine, orthopyroxene, clinopyroxene, garnet, plagioclase and spinel, which can be related by the reactions: orthopyroxene+clinopyroxene+spinel +anorthite=garnet, and forsterite+anorthite=garnet occur together both in coronal and in equant textures indicative of equilibrium. Compositions of the respective minerals are typically Fo25–72, En44–75, En30–44Fs9–23Wo47–49, Pp13–42Alm39–63Gr16–20, An29–49 and Sp16–58. When they occur in the same rock, equant and coronal garnets are homogeneous and compositionally identical suggesting that chemical equilibrium may have been attained despite coronal textures. Extrapolating reactions in the simple CMAS system to granulite temperatures and making thermodynamic corrections for solid solutions gives equilibration pressures (using the thermometry of Bohlen et al. 1980b) ranging from about 6.5 kb in the Lowlands and southern Adirondacks to 7.0–8.0 kb in the Highlands for the assemblage olivine-plagioclase-garnet. These results are consistent with inferred peak metamorphic conditions in the Adirondacks (Valley and Bohlen 1979; Bohlen and Boettcher 1981). Thus the isobaric retrograde path suggested by Whitney and McLelland (1973) and Whitney (1978) for the formation of coronal garnet in olivine metagabbros may not be required. Application of the same equilibria gives >8.7 kb for South Harris, Scotland and 0.9 kb for the Nain Complex. Disagreement of the latter value with orthopyroxeneolivine-quartz barometry (Bohlen and Boettcher 1981) suggests that the use of iron-rich rocks (olivines Fa50) results in errors in calculated pressures.Contribution No. 385 from the Mineralogical Laboratory, Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109, USA  相似文献   

18.
Arne Råheim 《Lithos》1975,8(3):221-236
Ferromagnesian minerals, particularly garnet but also phengite, omphacite and talc, from eclogites and surrounding schists from the Lyell Highway-Collingwood river area, western Tasmania are compositionally zoned.In rocks which have suffered little secondary alteration the Mg-value (100 MgMg+Fe++) of granets increases from core to rim, while the Mg-value of the most important coexisting ferromagnesian phases (clinopyroxene, phengite and talc in different assemblages) decreases from core to rim. CaO decreases from core to rim in garnet. MnO may show little or no variation in garnet, or decrease from core to rim.When compared with experimental data, the zoning of these minerals can be uniquely explained by growth during changing P,T conditions. The eclogites and the surrounding schists have the same prograde P,T history.When determining the KD-values of garnet and its coexisting ferromagnesian phases it is important to consider secondary rim alterations as well as the prograde zoning of the mineral.  相似文献   

19.
The ultrahigh-pressure eclogites from the northern Dabie Mountains in central China occurred as tectonic lens or blocks within granitic gneisses or meta-peridotites. Petrologic studies suggest that the studied eclogites experienced strongly retrogressive metamorphism and produced a series of characteristic retrogressive microstructures. The retrograde structures mainly include: (1) oriented needle mineral exsolution, e. g. , quartz needles in Na-clinopyroxene and rotile, clinopyroxene and apatite exsolution in garnet formed under decreasing pressure conditions during exhumation; (2) symplectite, especially, two generations of symplectites developed outside the garnet grains, which are called ““double symplectite““ here; (3) compositional zoning of minerals such as garnet and clinopyroxene; (4) minerals with a reaction rim or retrograde rim, e.g. , omphacite with a diopside rim, diopside with an amphibole rim and rutile with a rim of ilmenite. These retrograde textures, especially mineral zoning and symplectite, provide important petrologic evidence for the exhumation process and uplift of high-grade metamorphic rocks such as eclogite in the northern Dabie Mountains, indicating a rapid exhumation process.  相似文献   

20.
The eclogite facies assemblage K-feldspar–jadeite–quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite+quartz=albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm63Prp26Grs10)–K-feldspar–plagioclase–biotite±sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm50Prp14Grs35)–jadeite (Jd80–97Di0–4Hd0–8Acm0–7)–zoisite–phengite. Plagioclase is replaced by jadeite–zoisite–kyanite–K-feldspar–quartz, and biotite is replaced by garnet–phengite or omphacite–kyanite–phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar–jadeite–quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar–jadeite–quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15–21 kbar (±1.6–1.9 kbar) at 550±50 °C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio PH2O/PT. The inferred limiting a(H2O) for the assemblage jadeite–kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号