首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
内蒙古自治区碾子沟钼矿床地处华北地台北缘西拉木伦钼成矿带西段,为一典型的中型石英脉型钼矿床。该钼矿床矿脉(体)主要产于燕山早期二长花岗岩-钾长花岗岩内NNW、NW向断裂构造体系之中,成矿作用过程经历了黄铁矿±辉钼矿+石英(Ⅰ)、辉钼矿+黄铁矿±黄铜矿+石英(Ⅱ)、黄铜矿+黄铁矿±闪锌矿+石英(Ⅲ)及石英±方解石(Ⅳ)4个阶段。系统的流体包裹体岩相学、包裹体组分析、包裹体显微测温研究表明,矿床初始成矿流体为高温、中低盐度(490~550℃,盐度(w(NaC1))2%~10%,50~62 MPa)均匀的NaCl-H2O体系热液,δ18OH2O-SMOW(2.21‰)及δDH2O-SMOW(-68.9‰)表明其主要来源于岩浆热液;成矿流体上升并不断汇聚于容矿断裂空间,伴随温度、压力降低(380~460℃,26~40 MPa→360~420℃,25~30 MPa)而进入两相不混溶区,流体开始发生沸腾→强烈沸腾作用,导致成矿元素Mo大量沉淀富集成矿,成矿晚期残余流体与大气降水混合(δ18OH2O-SMOW为-2.41‰~2.51‰,δDH2O-SMOW为-110.1‰~-105.5‰),矿床属燕山早期中高温岩浆热液型钼矿床。  相似文献   

2.
高通岭矿床是海南岛典型的石英脉型钼矿床。基于流体包裹体以及H、O、S、Pb同位素研究,本文对高通岭石英脉型钼矿床成矿流体性质、成矿物质来源及成矿机制进行了讨论。结果表明,(1)流体包裹体以富液两相水溶液(A-L型)为主,次为富液两相含CO2水溶液(AC-L型)和富气两相含CO2溶液(AC-V型); A-L及AC-L型包裹体均一成液相, AC-V型包裹体均一成气相。均一成液相和均一成气相的包裹体共生指示流体不混溶或沸腾。拉曼结果显示流体成分以H2O为主,其次是CO2,含微量N2、CH4和H2等气体;成矿期流体包裹体均一温度为180~280℃,盐度为4.0%~8.2%NaCleqv;(2)H-O同位素组成显示成矿流体具有岩浆水与大气降水混合特点; δ34S值域为-0.9‰~5.5‰,均值2.8‰,属于深源硫;(3)Pb同位素组成及特征参数暗示其具有岩浆作用带来的地幔Pb与上地壳Pb混合成因。据此,高通岭钼矿床成矿流体...  相似文献   

3.
新华龙钼矿床位于中国东北地区吉林省东部,是一个新发现的斑岩型钼矿床。矿床产于花岗闪长斑岩中。矿床成矿阶段包括石英-浸染状辉钼矿、石英-网脉状辉钼矿、石英-黄铁矿-黄铜矿、石英-多金属硫化物和石英-碳酸盐化5个阶段。流体包裹体实验结果表明:流体包裹体的类型主要为气液两相包裹体,其次为纯气相和纯液相包裹体,还有少量含子矿物的多相包裹体。流体包裹体的均一温度为172~385 ℃,盐度(w(NaCl))为8.51%~45.44%。从早阶段到晚阶段成矿流体温度具有规律的演化,均一温度分别为360~390 ℃、270~350 ℃、250~260 ℃、220~230 ℃、170~190 ℃。其中:含子矿物多相包裹体均一温度为272~385 ℃,盐度为35.79%~45.44%,密度为1.07~1.08 g/cm3;气液两相包裹体均一温度为172~381 ℃,盐度为8.51%~23.36%,密度为0.70~0.99 g/cm3。激光拉曼光谱分析表明,包裹体的气体成分主要为CO2、H2O、N2和CH4。包裹体岩相学及测温表明,流体由早期的高温、高盐度、含二氧化碳的含矿流体在主成矿阶段发生流体包裹体的沸腾、CO2逸出、温度降低等过程,导致大量金属硫化物沉淀。结合氢氧同位素特征,初步确定该矿床的成矿流体主要以岩浆水为主,后期有大气水的加入。流体沸腾是新华龙钼矿床成矿的重要机制。  相似文献   

4.
与同一花岗质岩浆系统密切相关的不同成矿作用在成矿流体性质、组成、演化及成矿物质沉淀等特征既存在相似之处,也表现出明显差异。本文对赋存在社山复式岩体中的社垌石英脉型钨钼矿床和宝山斑岩型铜矿床进行的对比研究表明,钨钼矿体呈石英细脉状产出在社山加里东期黑云母花岗闪长岩中,铜矿体呈浸染状分布在宝山燕山晚期隐伏花岗斑岩体中。流体包裹体研究数据表明,社垌钨钼矿床石英中流体包裹体均一温度范围为180 ℃~320 ℃和340 ℃~440 ℃,其中主峰值范围为180 ℃~320 ℃,盐度峰值范围分别为0~10%、16%~20%、30%~34%,集中在0~10% NaClequiv.峰值范围内(n = 177),显示社垌钨钼矿床的成矿流体形成于一种中高温、中低盐度的H2O-NaCl±CO2体系。宝山斑岩型铜矿床中石英包裹体的均一温度范围在136.6 ℃~440.0 ℃,峰值为240 ℃~360 ℃,盐度主要集中在0.18%~34.83% NaClequiv.(n = 154),显示宝山斑岩型铜矿床的成矿流体属于中-高温、高盐度的NaCl-H2O-KCl±CO2体系。结合包裹体岩相学以及均一温度和盐度的特征,我们认为社垌脉状钨钼矿床成矿流体的演化经历了早期岩浆流体与晚期大气降水逐渐混合的过程,流体混合作用可能是引起矿石沉淀的主要因素,而宝山斑岩型铜矿床的成矿流体演化可能是早期岩浆结晶分异的中-高温、中-高盐度初始成矿流体,晚期又分异为高温、低盐度流体和高温、高盐度流体,流体沸腾和相分离作用对Cu金属元素的运移和沉淀起着重要的作用。  相似文献   

5.
吉林大黑山钼矿床位于兴蒙造山带东缘,为一典型的超大型斑岩型钼矿床,矿体主要产于花岗闪长斑岩岩体内。矿床的成矿阶段包括石英-黄铁矿、石英-磁黄铁矿-黄铁矿、石英-辉钼矿、石英-多金属硫化物和石英-碳酸盐化5个阶段。流体包裹体研究结果表明:流体包裹体的类型主要为气液两相包裹体,其次为纯气相和纯液相包裹体,还有少量含子矿物的三相包裹体。流体包裹体的均一温度为160℃~417.6℃,盐度为4.48%~41.05%。从早阶段到晚阶段成矿流体的温度具有规律的演化,均一温度分别为400℃~417.6℃,340℃~378℃,230℃~340℃,218℃,160℃~185℃。其中含子矿物三相包裹体均一温度为320℃~405℃,盐度为34.43%~41.05%,密度为0.94g/cm3~1.03g/cm3;气液两相包裹体均一温度为160℃~417.6℃,盐度为4.48%~13.55%,密度为0.62g/cm3~0.97g/cm3。激光拉曼光谱分析表明,气液两相包裹体成分主要为CO2。氢氧同位素研究结果显示,该矿床的成矿流体主要以岩浆水为主,后期有大气水的加入。流体沸腾是大黑山钼矿床成矿的重要机制。  相似文献   

6.
安徽省金寨县沙坪沟钼矿床是近年来秦岭—大别成矿带发现的超大型斑岩钼矿床,已探明钼资源储量246×10~4t。通过对沙坪沟钼矿床不同勘探线剖面和不同深度代表性样品的S、H、O稳定同位素地球化学的研究,揭示了沙坪沟钼矿床S、H、O同位素组成特征及其空间分布特征。矿床硫化物硫同位素组成变化范围较窄,δ34S变化于+0.4‰~+6.2‰,平均值为+3.47‰,落在火成岩范围,分布具明显的塔式效应,硫的来源比较均一,主要为深源硫。成矿流体的δ18O包裹体水为0.40‰~7.52‰。流体包裹体中δD变化范围为-90‰~-63‰。主成矿期成矿流体总体为岩浆水。在不同勘探线剖面上矿化中心具高的δ34S、δ18O值,而且显示出从深部钠长石—钾长石—硅化带→黄铁绢英岩化带→浅部的绿泥石—碳酸盐化带δ34S、δ18O值有降低的趋势。上述特征表明沙坪沟钼矿床主成矿期成矿环境由碱性向酸性过渡,且没有发生明显的低δ18O作用,成矿环境相对封闭,外部对流循环的雨水系统参与成矿作用程度相对较小,与东秦岭其他斑岩钼矿床不同。  相似文献   

7.
于明杰  王玉往  毛启贵  王京彬  张锐  程奋维  付王伟 《地球科学》2018,43(9):3100-3111, 3125
琼库都克银多金属矿床位于新疆哈密地区的小石头泉矿区中部,是矿区目前为止最大的银多金属矿床,目前人们对该矿床的成矿机制研究有待深入.在详细矿床地质特征的研究基础上,开展了石英流体包裹体显微测温分析、群体包裹体的气液相成分分析以及稳定同位素(H、O同位素)分析.结果显示,琼库都克矿床的原生石英流体包裹体类型主要为富液相的水溶液包裹体,个体较小;成矿早期阶段(Ⅰ阶段)流体包裹体的均一温度变化于152~280 ℃,盐度ω(NaCleqv)变化范围为2.73%~13.50%;主成矿阶段(Ⅱ阶段)流体包裹体的均一温度变化范围为131~261 ℃,盐度ω(NaCleqv)变化范围为0.35%~9.59%,总体表现出中-低温、中-低盐度的成矿流体特征,从Ⅰ阶段到Ⅱ阶段,成矿流体的均一温度和盐度均有所降低,表明温度和盐度的降低可能为金属沉淀的成矿机制.流体包裹体的气相成分中绝大部分为H2O,其次含有一定的CO2,并含有少量N2以及CH4和C2H6等还原性气体;液相成分中阳离子主要为Na+、K+,阴离子以Cl-占绝大多数,部分含SO42-,表明琼库都克矿床的成矿流体富含挥发分,为H2O-NaCl型热液体系.主成矿阶段包裹体的δDH2O值范围为-89.5‰~-85.1‰,δ18OH2O值为-8.671‰~-5.94‰,结合包裹体成分分析,显示矿床主成矿阶段的成矿热液为大气降水与岩浆水的混合来源.矿床地质特征、流体包裹体的研究结果以及氢氧同位素特征显示,琼库都克矿床为浅成低温热液型矿床.   相似文献   

8.
黑龙江霍吉河钼矿床位于小兴安岭-张广才岭钼矿带北缘,为一典型的大型斑岩型钼矿床,矿体赋存在花岗闪长岩体内。矿床成矿阶段包括石英-黄铁矿、石英-辉钼矿、石英-多金属硫化物以及石英-碳酸盐化4个阶段。对采集的不同成矿阶段样品进行流体包裹体岩相学观察和显微测温发现,流体包裹体的类型有气液两相包裹体、纯气相和纯液相包裹体、少量含子矿物的三相包裹体。流体包裹体的均一温度为114℃~418℃,盐度w(NaCl)为0.71%~47.97%,流体的密度为0.57g/cm~3~1.15g/cm~3,压力为8.31 MPa~49.42 MPa。激光拉曼光谱分析表明,气液两相包裹体成分主要为CO_2。氢氧同位素研究结果显示,成矿流体的δD为-78.4‰~-110‰,δ18 O值为-3.51‰~7.62‰;表明该矿床的成矿流体主要以岩浆水为主,后期有大气水的加入。液相包裹体、气相包裹体和含子矿物三相包裹体密切共存,相同的均一温度范围内,盐度相差较大,表明成矿流体经历了沸腾过程,沸腾作用可能是引起钼等成矿物质沉淀的重要机制。  相似文献   

9.
扬子地块西南缘红泥坡矿床是近年来新发现的大型铜矿床。本文通过流体包裹体岩相学、显微测温、激光拉曼成分分析和硫化物原位S同位素分析,揭示了红泥坡铜矿床的成矿物质来源、成矿流体来源及矿质沉淀机制。该矿床成矿过程分为火山-沉积期和热液成矿期。热液成矿期石英+方解石+硫化物阶段(Ⅰ)的石英中发育纯CO2包裹体、水溶液-CO2包裹体、含固相的水溶液-CO2包裹体、含固相的水溶液包裹体以及富液相两相水溶液包裹体。各类包裹体成群分布,均一温度(106~500℃)和盐度(8.8%~59.8%)变化大。激光拉曼分析表明成矿流体中挥发分成分为H2O、CO2和少量CH4。火山-沉积期黄铁矿原位δ34S值为9.18‰~9.34‰,为海水硫和岩浆硫的混合硫;热液成矿期硫化物的原位δ34S值为4.42‰~5.26‰,为岩浆硫和少量地层硫的混合硫。综合矿床成矿时代、流体包裹体及S同位素组成特征,认为古元古代火山-沉积作用形成含Fe和Cu的矿源...  相似文献   

10.
辽西兰家沟钼矿床成矿流体特征及成因探讨   总被引:9,自引:1,他引:8  
兰家沟钼矿床是中国北方重要的独立钼矿床,矿体主要赋存于细粒花岗岩体内部及与粗粒花岗岩的接触部位,矿石类型以辉钼矿-石英大脉为主。流体包裹体研究表明,兰家沟钼矿床含钼石英脉中流体包裹体较少,类型主要为气液两相,个别含子矿物多相包裹体;激光拉曼光谱测试表明,成矿流体成分主要为H2O,微量的CO2、CO23-。成矿期流体包裹体的均一温度为160~405℃,集中于180~320℃;盐度w(NaCleq)为2.4%~16.5%,多数在8%~14%。成矿流体在演化过程中发生了中等盐度和低盐度流体的混合作用,2种不同成分流体的混合作用使得辉钼矿大量沉淀而成矿。氢氧同位素研究表明,成矿流体的δD为-81‰~-101‰,δ18O水为-0.1‰~4.5‰,小于兰家沟花岗岩全岩δ18O水值,反映成矿流体来自混合的岩浆水与大气降水。通过与典型斑岩型钼矿床地质特征、矿化、围岩蚀变、流体包裹体特征及同位素组成的对比,认为兰家沟钼矿床属于热液脉型向斑岩型过渡类钼矿床。  相似文献   

11.
目前冈底斯成矿带报道的斑岩型矿床主要集中在东段,而鲁尔玛斑岩型铜(金)矿为冈底斯成矿带西段新发现的铜矿,具有钾硅酸盐化、绢英岩化、青磐岩等明显的斑岩型矿床蚀变特征.其热液脉体从早到晚化分为:钾硅酸盐化脉(A脉)、石英-金属硫化物脉(B脉)以及石英-绿帘石-碳酸盐化脉(D脉).对各阶段热液脉体的的流体包裹体进行了岩相学、显微测温、显微激光拉曼和H-O-C同位素等分析.发现A脉石英中流体包裹体的形成温度集中在390~460℃,盐度介于4.5%~21.6%NaCleqv和43.6%~59.6%NaCleqv两个区间;B脉石英中流体包裹体的形成温度集中在310~380℃,盐度介于3.6%~19.8%NaCleqv和6.0%~16.0%NaCleqv两个区间;D脉石英和方解石中流体包裹体的形成温度集中在200~320℃,盐度集中在0.4%~14.7%NaCleqv.拉曼分析表明,鲁尔玛铜(金)矿的流体包裹体含CO2、N2、CH4等气体及石盐子晶和多种金属硫化物和金属氧化物子晶.各热液脉体石英中流体包裹体的δDH2O,V-SMOW值的变化范围为-128‰^-110‰,δ18OH2O,V-SMOW值的变化范围为-9.09‰^-1.45‰,方解石的δ13CCal,V-PDB值的变化范围为-20.8‰^-19.8‰,δ18OCal,V-SMOW值的变化范围为-5.9‰^-4.9‰,展现出岩浆热液的特征,晚期还有大气降水的加入.研究结果显示,成矿流体属高温、高盐度、含CO2、N2、CH4等气体和Cu、Fe、Mo等金属元素的Ca+-Na+-Cl-H2O体系流体,具有典型的斑岩型铜矿床成矿流体的特征.成矿流体从深部封闭体系运移到浅部的开放体系,温压环境突变导致金属硫化物沉淀,形成A脉和B脉型矿化.随着成矿物质的大量析出,同时伴随着大气降水等因素的影响,流体温度、盐度迅速降低,产生D脉型矿化.  相似文献   

12.
为揭示谦比希铜矿床的成矿流体性质、成矿物质来源及其演化特征,对其矿石和脉石矿物展开了流体包裹体和H-O-S同位素地球化学研究.结果显示,热液型脉状矿化石英流体包裹体均一温度变化于100~350 ℃,盐度变化于11%~19%NaCleqv;δDV-SMOW值为-64.0‰~-52.6‰,δ18OH2O值为1.57‰~2....  相似文献   

13.
海连富  刘安璐  陶瑞  白金鹤  宋扬 《地球科学》2021,46(12):4274-4290
卫宁北山地区是宁夏境内最有望实现找矿突破的多金属矿成矿区之一,已发现众多Au、Ag、Cu、Pb、Zn、Fe、Co等矿点或矿化点.金场子金矿是该地区已发现的最大的金矿床,矿体主要赋存在前黑山组及中宁组内的层间断裂破碎带中,呈东西向带状分布,产状与地层近乎一致.区域上除少量闪长玢岩脉出露外,岩浆岩不发育.为了探讨金场子金矿成矿流体性质、来源和矿床成因,对研究区流体包裹体和C-H-O同位素进行了研究.金场子金矿床成矿热液期可划分为4个成矿阶段,从早到晚分别是绢云母-黄铁矿-石英阶段(Ⅰ)、黄铁矿-重晶石-石英阶段(Ⅱ)、多金属硫化物-碳酸盐-石英阶段(Ⅲ)和黄铁矿-碳酸盐阶段(Ⅳ),其中Ⅲ阶段为主成矿阶段.不同成矿阶段的流体包裹体有4种类型,分别是水溶液包裹体、纯CO2包裹体、CO2-H2O包裹体和含子晶多相包裹体.显微测温结果显示,成矿流体的完全均一温度介于171~396 ℃,主要集中于180~270 ℃,盐度介于1.30%~10.99% NaCl equiv,密度为0.24~0.78 g/cm3,为中低温、低盐度、低密度的CO2-H2O-NaCl体系,含有少量N2.热液期石英的δD值为-66.0‰~-32.0‰,δ18OV-SMOW值为+19.7‰~+22.6‰,指示成矿流体为变质流体.C同位素显示,晚阶段(Ⅳ)方解石和菱铁矿的δ13C介于-2.540‰~-0.736‰,表明成矿流体中的C具有混合来源的特点,奥陶系-石炭系陆源碎屑岩和碳酸盐岩的变质脱水作用形成的流体可能是金成矿流体的主要来源.成矿过程中流体发生了明显的不混溶现象,是造成金沉淀的重要因素.矿床成因类型属造山型金矿.   相似文献   

14.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

15.
老挝班康姆矿床是近年来在琅勃拉邦-黎府成矿带新发现的一个大型铜金矿床。该矿床矽卡岩与矿体主要赋存在安山岩中且缺乏矽卡岩分带,与典型矽卡岩矿床的地质特征存在一定的差别。因此,厘清班康姆铜金矿床的成矿流体、成矿物质来源及矿床成因机制是后续开展琅勃拉邦-黎府成矿带大型铜金矿床找矿勘探的基础。该矿床矿化阶段石英流体包裹体δD分布于-110‰~-90‰,δ18O分布于-1.5‰~7.1‰,其中低δD的样品具有相对高的δ18O值;黄铁矿流体包裹体的3He/4He为0.41~3.43Ra(大部分<1Ra),40Ar/36Ar为314.8~362.4。H-O及He-Ar同位素结果表明,班康姆矿床成矿流体来源于岩浆流体(至少部分来自地幔)与低δD的大气雨水的混合,雨水占更大的比例,且某些矿化流体的雨水端元在混合前经历了明显的水岩作用。除一件样品(BK64)的黄铁矿具有高的δ34S(8.1‰)外,其余硫化物的δ34S分布于-0.9‰~1.5‰,位于地幔硫的范围。共生硫化物对的硫同位素平衡分馏计算以及动力学分馏不支持高δ34S(8.1‰)黄铁矿的硫来自从热液流体,可能来自围岩。热液方解石的δ13C范围为-3.1‰~2.5‰,δ18O变化于26.0‰~28.4‰,指示其碳来自矿区灰岩,而灰岩的溶解为热液摄取围岩的重硫提供了可能。矿石黄铁矿Pb同位素组成(206Pb/204Pb:17.9284~18.7756;207Pb/204Pb:15.5336~15.6651;208Pb/204Pb:37.9125~38.8090)位于黎府褶皱带和长山褶皱带晚二叠世—中三叠世大陆弧岩浆岩的Pb同位素范围,介于印支地块玄武岩和泰国-老挝S-型花岗岩及相关矿床的Pb同位素组成之间,指示班康姆矿床的Pb来自壳幔混合源。本文S-Pb-He-Ar同位素结果及区域Cu-Au成矿过程的岩石地化研究,表明班康姆矿床Cu、Au主要来自地幔。与典型矽卡岩Cu-Au矿床的S-Pb-H-O同位素及矽卡岩矿物流体包裹体盐度特征的对比,结合前人的火山气热液交代火山岩形成矽卡岩的实验结果,认为班康姆矽卡岩型Cu-Au矿床的形成机制为深部出溶的气相为主的含矿岩浆流体沿断裂上升到浅部交代安山岩或大理岩并经历了流体混合、沸腾及矿石沉淀等过程。  相似文献   

16.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

17.
在前人研究成果的基础上,对江西新余良山钼矿床的地质特征进行了详细研究,系统测试了矿床中石英脉型钼矿石样品的氢、氧、硫和铅同位素组成,进而探讨钼矿床的成矿流体性质以及成矿物质来源。良山钼矿床δD值变化范围-61‰~ -57.9‰,平均值-59.1‰;δ18OV-SMOW值变化于7.1‰~10.5‰,平均值9.2‰,流体的δ18OH2O值变化于-3.32‰~-0.52‰,平均值-1.52‰,表明成矿流体具有岩浆水和大气降水混合流体特征。硫化物的δ34SV-CDT值为-1.8‰~2.6‰,极差4.4‰,平均值1.12‰,其中黄铁矿δ34SV-CDT值为-1.8‰~2.6‰,辉钼矿δ34SV-CDT值为0.8‰~2.3‰,硫同位素表现为较小的正值特征,具有典型的岩浆硫组成特点。良山钼矿石中的矿石铅同位素206Pb/204Pb值为17.555~19.474,207Pb/204Pb值15.486~15.768,208Pb/204Pb值37.942~39.943,μ值9.35~9.7,ω值37.06~38.31,Th/U值3.8~3.96,矿石铅为混合铅,表明成矿物质为混合来源。良山钼矿床应为岩浆热液型-石英脉型钼矿床,是中生代华南板块板内构造演化区域金属成矿作用大爆发的产物。   相似文献   

18.
湘西北花垣矿集区位于扬子地台东南缘,是湘西-鄂西成矿带上最典型的超大型铅锌矿床所在地.通过对花垣矿集区典型铅锌矿床流体包裹体显微测温、成分分析及C、H、O同位素研究,结果表明,该区铅锌矿床闪锌矿与方解石中流体包裹体的均一温度范围集中在120~200℃,盐度范围集中在8%~20% NaCleqv.流体中液相离子成分主要为Ca2+、Na+、Mg2+、SO42-、Cl-,气相成分主要为H2O、N2和CO2及少量的CO、CH4和H2.流体的δDSMOW值范围为-60.4‰~-33.0‰,δ18O流体值范围为3.8‰~9.2‰.以上流体包裹体和稳定同位素分析结果表明,花垣矿集区铅锌矿床的成矿流体具有热卤水的性质,主要来源于建造水和大气降水.成矿期方解石的δ13CPDB值范围为-4.89‰~0.57‰,δ18OSMOW值范围为13.37‰~21.73‰,略低于碳酸盐围岩,说明成矿流体中的碳主要来源于碳酸盐围岩的溶解作用.矿石沉淀机制可能为两种流体的混合,即来自深部的富含金属物质的热卤水与富含有机质和硫酸盐的建造水及下渗大气降水的混合导致了铅锌矿石的沉淀.对地质和地球化学资料的综合结果表明,花垣矿集区铅锌矿床属于密西西比河谷型(MVT)铅锌矿床.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号