首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dispersion properties of kinetic Alfvén wave in quantum magnetoplasma are derived. The quantum contribution to the Landau damping of kinetic Alfvén wave is also derived by using linearized Vlasov equation which contains the Bohm quantum potential. Classical Landau damped kinetic Alfvén waves play an important role in turbulence of astrophysical plasmas. The quantum modification in Landau damping of kinetic Alfvén wave can also play a significant role in changing the scaling law of turbulent spectra as well as the formation of damped localized Alfvénic structures in dense astrophysical plasmas.  相似文献   

3.
It is shown that a recent conclusion of Shivamaggi that the modulational instability of finite amplitude Alfvén waves arises when the density cavity travels at subsonic speeds, is incorrect.  相似文献   

4.
The propagation and interference of Alfvén waves in magnetic regions is studied. A multilayer approximation of the standard models of the solar atmosphere is used. In each layer, there is a linear law of temperature variation and a power law of Alfvén velocity variation. The analytical solutions of a wave equation are stitched at the layer boundaries. The low-frequency Alfvén waves (P > 1 s) are able to transfer the energy from sunspots into the corona by tunneling only. The chromosphere is not a resonance filter for the Alfvén waves. The interference and resonance of Alfvén waves are found to be important to wave propagation through the magnetic coronal arches. The transmission coefficient of Alfvén waves into the corona increases sharply on the resonance frequences. To take into account the wave absorption in the corona, a method of equivalent schemes is developed. The heating of a coronal arch by Alfvén waves is discussed.  相似文献   

5.
We have presented the localization of kinetic Alfvén wave (KAW) in intermediate β plasma (m e /m i ?β?1) by developing a model based on pump kinetic Alfvén wave and finite amplitude magnetosonic fluctuations. When KAW is perturbed by these background magnetosonic fluctuations, filamentary structures of KAW magnetic field are formed. First, a semi analytical model based on paraxial approximation has been developed to understand this evolution process. Localized structures and magnetic fluctuation spectrum of KAW has also been studied numerically for finite frequency of KAW. The calculated magnetic fluctuation spectrum follows two types of scalings. Above the proton gyroradius scale lengths (in inertial range), spectrum follows Kolmogorovian scaling. Below this scale dispersion starts and the spectrum steepens to about \(k_{x}^{-2.5}\) . The result shows the steepening of power spectra which can be responsible for particle acceleration in solar wind due to the energy transfer from larger to smaller lengthscales. Obtained magnetic turbulent spectra are consistent with observations of Cluster spacecraft in solar wind.  相似文献   

6.
Nonlinear Alfvén waves, which in the infinitely conducting plasma are noncompressive and have a constant magnetic field strength (B 2=const), propagate in a turbulent plasma. The latter is characterized by a big (but finite) electrical conductivity eff due to micro-instabilities. The Alfvén wave in such a medium is governed by the diffusion equation. It is shown that an initial periodic perturbation (withB 2=const) while still being incompressive, decays due to dissipation.  相似文献   

7.
Using the 2D numerical simulation we have studied the nonlinear evolution of kinetic Alfvén wave (KAW) in intermediate β plasmas (β?m e /m i ?1). The coupled equations of kinetic Alfvén wave (KAW) and ion acoustic wave (IAW) have been studied with different initial conditions using (1) periodic perturbation, (2) Gaussian perturbation and (3) random perturbation. We have studied the effect of initial conditions on the filament formation and on the turbulent scaling laws. The scale size of the localized structures is also obtained under different conditions.  相似文献   

8.
A mathematical model for undamped, toroidal, small-amplitude Alfvén waves in a spherically-symmetric or equatorial stellar wind is developed in this paper. The equations are reduced to a very simple form by using real Fourier amplitudes and the ratio of the inward and outward propagating wave amplitudes, which is interpreted as a measure of the relative influence of wave reflection in the flow, on the solution at a given point. Asymptotic solutions at large distances are found to depend only on one parameter, = / P - the ratio of wave frequency and critical (or cutoff) frequency which is a flow characteristic; a = 1 divides solutions into two qualitatively different groups. When 1 the asymptotic (r-) ratio of the inward and outward propagating wave amplitudes does not depend on wave frequency and is equal to unity, while the phase shift between them changes; in this case the wave pattern is a standing wave. If > 1 the converse occurs with the ratio of the amplitudes decreasing rapidly as the frequency increases, and the phase shift equals to -1/2, corresponding to a propagating wave pattern. The result is also expressed in terms of velocity and magnetic field perturbations.Existence of a finite incoming wave amplitude solution at the Alfvén critical point indicates that this point is stable with respect to the perturbations which originate at the critical point and spend an infinite time in its vicinity.Special attention is paid to the applicability of the WKB approximation. It is argued that it can be used only in finite intervals which do not contain the Alfvén critical point, with inward propagating waves taken into account through the boundary conditions. It is shown that despite the presence of reflection, the outward propagating wave amplitude can be described reasonably well by the WKB formula, perhaps with different constants in different regions. In this context = 1 divides solutions which cannot be approximated by the WKB estimate at all at large distances (the first group), from those which can with any given accuracy.As an illustration of the analytical behaviour some numerical results are shown using a cool wind model. These are likely to express qualitatively the features of the Alfvén waves in any stellar wind, since the only assumptions about the flow used in the analytical study of the wave equations were that: the flow has small velocity at the base of the corona; it then passes through the critical point, and reaches its finite non-zero limit at infinity.  相似文献   

9.
Coronal heating by Alfvén waves   总被引:1,自引:0,他引:1  
Wentzel  Donat G. 《Solar physics》1974,36(1):129-137
Solar Physics - If Alfvén waves are responsible for the heating of the solar corona, what are the various dissipation processes, under what conditions are they important, and what...  相似文献   

10.
We present an analytical model to explore the magnetic field turbulent spectrum by coupled high-frequency kinetic Alfvén wave (KAW) and slow mode of Alfvén wave (AW). The spectrum is computed as a realization of energy cascades from larger to smaller scales for a specific case of solar wind plasma at 1 AU. A two-fluid technique is implemented for the derivation of model equations leading two wave modes. These coupled, nonlinear equations are solved numerically. The nonlinearity in the system arises due to nonlinear ponderomotive force, which is believed to be responsible for the wave localization and magnetic islands formation. The numerical results show that the magnetic islands grow with time and attain a quasi-steady state after the modulation instability is saturated. The magnetic field spectrum and associated spectral indices are computed near the time of saturation of instability. The simulated spectrum in dispersion region follows a power-law with an index of ?2.5. The steeper spectrum could be attributed as energy transfer from larger to smaller scales and helps to study turbulence in solar wind. The magnetic field spectrum and spectral index show a good agreement with the observation of solar wind turbulent spectra.  相似文献   

11.
12.
Nonlinear kinetic Alfvén waves where m e /m i , have been solved both with and without the Poisson equation correction. It is found that the ratio of the perpendicular electric field and magnetic field, and the ratio of parallel and perpendicular electric field increase with deepening of the depressive density soliton. The former ratio may be larger than the Alfvén velocity in the case of a large amplitude solitary kinetic Alfvén wave. The Poisson equation correction is important for the nonlinear kinetic Alfvén wave propagating along the magnetic field, which solves a puzzle of Sagdeev potential to approach infinity in the limit ofK x 0. This correction causes the solitary KAW possessing an electrostatic character along the direction of wave moving frame. These results have been compared with the observations from the Freja satellite in the low aurora.  相似文献   

13.
We examine the propagation of Alfvén waves in the solar atmosphere. The principal theoretical virtues of this work are: (i) The full wave equation is solved without recourse to the small-wavelength eikonal approximation (ii) The background solar atmosphere is realistic, consisting of an HSRA/VAL representation of the photosphere and chromosphere, a 200 km thick transition region, a model for the upper transition region below a coronal hole (provided by R. Munro), and the Munro-Jackson model of a polar coronal hole. The principal results are:
  1. If the wave source is taken to be near the top of the convection zone, where n H = 5.2 × 1016 cm?3, and if B = 10.5 G, then the wave Poynting flux exhibits a series of strong resonant peaks at periods downwards from 1.6 hr. The resonant frequencies are in the ratios of the zeroes of J 0, but depend on B , and on the density and scale height at the wave source. The longest period peaks may be the most important, because they are nearest to the supergranular periods and to the observed periods near 1 AU, and because they are the broadest in frequency.
  2. The Poynting flux in the resonant peaks can be large enough, i.e. P ≈ 104–105 erg cm?2s?1, to strongly affect the solar wind.
  3. ¦δv¦ and ¦δB¦ also display resonant peaks.
  4. In the chromosphere and low corona, ¦δv ≈ 7–25 kms?1 and ¦δB¦ ≈0.3–1.0 G if P ≈104-105 erg cm?2s?1.
  5. The dependences of ¦δv¦ and ¦δB¦ on height are reduced by finite wavelength effects, except near the wave source where they are enhanced.
  6. Near the base, ¦δB¦ ≈ 350–1200 G if P ~- 104–105. This means that nonlinear effects may be important, and that some density and vertical velocity fluctuations may be associated with the Alfvén waves.
  7. Below the low corona most wave energy is kinetic, except near the base where it becomes mostly magnetic at the resonances.
  8. ?0 < δv 2 > v A or < δB 2 > v A/4π are not good estimators of the energy flux.
  9. The Alfvén wave pressure tensor will be important in the transition region only if the magnetic field diverges rapidly. But the Alfvén wave pressure can be important in the coronal hole.
  相似文献   

14.
The velocity shear of ion beams observed in the polar cusp region can drive the kinetic Alfvén modes unstable. A hot ion beam can excite both a resonant kinetic Alfvén wave instability and a nonresonant coupled Alfvén ion-acoustic wave instability. For the case of a cold ion beam only the latter instability is excited. For the altitude range of 5–7R e , velocity shearS0.04–1.0 is needed to excite the kinetic Alfvén wave instabilities. HereS=(dV B / cB dx), whereV b is the streaming velocity,and cB is the gyrofrequency of the bean ions. The excited modes have frequencies, in the satellite frame of reference, in the ULF frequency range. The noise generated by the velocity shear-driven Alfvén modes is electromagnetic in nature. These modes have a substantial component of parallel electric fields and, therefore, they can play an important role in the ionosphere-magnetosphere coupling process occurring in the polar cusp region.  相似文献   

15.
P. R. Wilson 《Solar physics》1975,42(2):333-340
Parker's explanation of the sunspot phenomenon in terms of the enhanced emission of Alfvén waves (solar vulcanology) is shown to be compatible with observation only if 90% of the waves propagate downwards. Further difficulties arise if the region of cooling by Alfvén wave generation is restricted to a depth of 2 Mm. However, it is shown that, if Alfvén wave generation is included in a recent model proposed by Meyer, Schmidt, Weiss and Wilson, these difficulties may be resolved. The problem of the sharp umbra and penumbra boundaries is discussed and it is shown that features of this combined model are relevant to the flare phenomenon.  相似文献   

16.
The excitation and dissipation of global and surface Alfvén waves and their conversion into kinetic Alfvén waves have been analyzed for solar coronal loops using a cylindrical model of a magnetized plasma. Also the optimal conditions for coronal loop heating regimes with density of dissipated power 103 erg cm–3 s–1 by the new scheme named combined Alfvén wave resonance are found. Combined Alfvén wave heating regime appears when the global Alfvén wave is immersed into the Alfvén continuum with the condition of not-so-sharp distribution of axial current.Instituto de Matemática, Universidade Federal Fluminense, Niterói, RJ, Brazil  相似文献   

17.
The linearized propagation of axisymmetric twists on axisymmetric vertical flux tubes is considered. Models corresponding to both open (coronal hole) and closed (active region loops) flux tubes are examined. Principal conclusions are: Open flux tubes: (1) With some reservations, the model can account for long-period (T 1 hr) energy fluxes which are sufficient to drive solar wind streams. (2) The waves are predicted to exert ponderomotive forces on the chromosphere which are large enough to alter hydrostatic equilibrium or to drive upward flows. Spicules may be a consequence of these forces. (3) Higher frequency waves (10 s T few min) are predicted to carry energy fluxes which are adequate to heat the chromosphere and corona. Nonlinear mechanisms may provide the damping. Closed flux tubes: (1) Long-period (T 1 hr) twists do not appear to be energetically capable of providing the required heating of active regions. (2) Loop resonances are found to occur as a result of waves being stored in the corona via reflections at the transition zones. The loop resonances act much in the manner of antireflectance coatings on camera lenses, and allow large energy fluxes to enter the coronal loops. The resonances may also be able to account for the observed fact that longer coronal loops require smaller energy flux densities entering them from below. (3) The waves exert large upward and downward forces on the chromosphere and corona.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
C. Uberoi 《Solar physics》1982,78(2):351-354
The Alfvén surface waves can arise due to the discontinuity in the Alfvén speed across the interface along which these waves propagate. This note studies the relationship between v A1 and v A2 which is required for the existence of Alfvén surface waves in low- plasma.  相似文献   

19.
Interaction of Alfvén waves with plasma inhomogeneities generates phase mixing which can lead to dissipate Alfvén waves and to heat the solar plasma. Here we study the dissipation of Alfvén waves by phase mixing due to viscosity and resistivity variations with height. We also consider nonlinear magnetohydrodynamic (MHD) equations in our theoretical model. Non-linear terms of MHD equations include perturbed velocity, magnetic field, and density. To investigate the damping of Alfvén waves in a stratified atmosphere of solar spicules, we solve the non-linear MHD equations in the xz plane. Our simulations show that the damping is enhanced due to viscosity and resistivity gradients. Moreover, energy variations is influenced due to nonlinear terms in MHD equations.  相似文献   

20.
The transfer of wave energy to plasma energy is a very crucial issue in coronal holes and helmet streamer regions. Mixed mode Alfvén waves, also known as kinetic Alfvén wave (KAW) can play an important role in the energization of the plasma particles because of their potential ability to heat and accelerate the plasma particles via Landau damping. This paper presents an investigation of the growth of a Gaussian perturbation on a non-uniform kinetic Alfvén wave having Gaussian wave front. The effect of the nonlinear coupling between the main KAW and the perturbation has been studied. The dynamical equations for the field of the main KAW and the perturbation have been established and their semi-analytical solution has been obtained in the low (β≪ me/mi≪ 1) and the high (β≫ me/mi≪ 1) β cases. The critical field of the main KAW and the perturbation has been evaluated. Nonlinear evolution of the main KAW and the perturbation into the filamentary structures and its dependence on various parameters of the solar wind and the solar corona have been investigated in detail. These filamentary structures can act as a source for the particle acceleration by wave particle interaction because the KAWs are mixed modes and Landau damping is possible. Especially, in the solar corona, the low β and the high β cases could correspond to the coronal holes and the helmet streamer. The presence of the primary and the secondary filaments of the perturbation may change the spectrum of the Alfvénic turbulence in the solar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号