首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article gives an elementary review of gravitational collapse and the cosmic censorship hypothesis. Known models of collapse resulting in the formation of black holes and naked singularities are summarized. These models, when taken together, suggest that the censorship hypothesis may not hold in classical general relativity. The nature of the quantum processes that take place near a naked singularity, and their possible implication for observations, is briefly discussed.  相似文献   

2.
3.
We study the dynamical structure of a self-gravitating disc with coronae around a supermassive black hole. Assuming that the magnetorotational instability responsible for generating the turbulent stresses inside the disc is also the source for a magnetically dominated corona, a fraction of the power released when the disc matter accretes is transported to and dissipated in the corona. This has a major effect on the structure of the disc and its gravitational (in)stability according to our analytical and self-consistent solutions. We determine the radius where the disc crosses the inner radius of gravitational instability and forms the first stars. Not only the location of this radius which may extend to very large distances from the central black hole, but also the mass of the first stars highly depends on the input parameters, notably the viscosity coefficient, the mass of the central object and the accretion rate. For accretion discs around quasi-stellar objects (QSOs) and the Galactic Centre, we determine the self-gravitating radius and the mass of the first clumps. Comparing the cases with a corona and without a corona for typical discs around QSOs or the Galactic Centre, when the viscosity coefficient is around 0.3, we show that the self-gravitating radius decreases by a factor of approximately 2, but the mass of the fragments increases with more or less the same factor. The existence of a corona implies a more gravitationally unstable disc according to our results. The effect of a corona on the instability of the disc is more effective when the viscosity coefficient increases.  相似文献   

4.
Stellar-mass black holes (BHs) are expected to segregate and form a steep density cusp around supermassive black holes (SMBHs) in galactic nuclei. We follow the evolution of a multimass system of BHs and stars by numerically integrating the Fokker–Planck energy diffusion equations for a variety of BH mass distributions. We find that the BHs 'self-segregate', and that the rarest, most massive BHs dominate the scattering rate closest to the SMBH  (≲10−1 pc)  . BH–BH binaries form out of gravitational wave emission during BH encounters. We find that the expected rate of BH coalescence events detectable by Advanced LIGO is  ∼1–102 yr−1  , depending on the initial mass function of stars in galactic nuclei and the mass of the most massive BHs. We find that the actual merger rate is likely ∼10 times larger than this due to the intrinsic scatter of stellar densities in many different galaxies. The BH binaries that form this way in galactic nuclei have significant eccentricities as they enter the LIGO band (90 per cent with   e > 0.9  ), and are therefore distinguishable from other binaries, which circularize before becoming detectable. We also show that eccentric mergers can be detected to larger distances and greater BH masses than circular mergers, up to  ∼700 M  . Future ground-based gravitational wave observatories will be able to constrain both the mass function of BHs and stars in galactic nuclei.  相似文献   

5.
The rate of gravitational wave bursts from the mergers of massive primordial black holes in clusters is calculated. Such clusters of black holes can be formed through phase transitions in the early Universe. The central black holes in clusters can serve as the embryos of supermassive black holes in galactic nuclei. The expected burst detection rate by the LISA gravitational wave detector is estimated.  相似文献   

6.
In this paper, we compute the gravitational signal emitted when a white dwarf moves around a black hole on a closed or open orbit using the affine-model approach. We compare the orbital and the tidal contributions to the signal, assuming that the star moves in a safe region where, although very close to the black hole, the strength of the tidal interaction is insufficient to provoke the stellar disruption. We show that for all considered orbits the tidal signal presents sharp peaks corresponding to the excitation of the non-radial oscillation modes of the star, the amplitude of which depends on how deep the star penetrates the black hole tidal radius and on the type of orbit. Further structure is added to the emitted signal by the coupling between the orbital and the tidal motions.  相似文献   

7.
8.
This is a first attempt to find a realistic explanation of the observed redshifts of quasars associated with galaxies, by considering, in addition to the inertial, also the gravitational time dilation in the strong field of quasars interpreted as huge black holes accreting matter from their surroundings. This interpretation allows us to understand the observed predominance of excess redshifts of quasars and construct possible semiquantitative models for the pair NGC 4319/Markarian 205. The proposed models do not contradict to the present astrophysical knowledge, but a selection of the most satisfactory one is still difficult because of the existing uncertainty in estimates of the sizes of radiating regions in matter accreted by a flying black hole.Essay received 2 March, 1979 by the Gravity Research Foundation (Gloucester, Mass., U.S.A.) and selected for Honorable Mention for 1979.  相似文献   

9.
We study the effects of temperature on strange stars. It is found that the maximum mass of the star decreases with the increase of temperature, as at high temperatures the equations of state become softer. Moreover, if the temperature of a strange star increases, keeping its baryon number fixed, its gravitational mass increases and its radius decreases. This leads to a limiting temperature, where it turns into a black hole. These features are the result of a combined effect of the change of gluon mass and the quark distribution with temperature. We report on a new type of radial oscillation of strange stars, driven by what we call 'chromothermal' instability. We also discuss the relevance of our findings in the astrophysics of core collapse supernovae and gamma-ray bursts.  相似文献   

10.
11.
In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, \(z\sim \) 6–7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at \(\approx \)10\(^4\) K. We show that even under the existing abundance limits, the primordial black holes of masses \(\gtrsim \)10\(^{-2}M_\odot \), can heat the collapsing gas to an extent that the \(\mathrm{H}_2\) formation is inhibited. The collapsing gas can maintain its temperature at \(10^4\) K till the gas reaches a critical density \(n_{{c}} \,{\approx }\, 10^3~\hbox {cm}^{-3}\), at which the roto-vibrational states of \(\mathrm{H}_2\) approaches local thermodynamic equilibrium and \(\mathrm{H}_2\) cooling becomes inefficient. In the absence of \(\mathrm{H}_2\) cooling, the temperature of the collapsing gas stays at \(\approx \)10\(^4\) K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.  相似文献   

12.
13.
A gravitationless black hole model is proposed in accord with a five-dimensional fully covariant Kaluza-Klein (K-K) theory with a scalar field, which unifies the four-dimensional Einsteinian general theory of relativity and Maxwellian electromagnetic theory. It is shown that a dense compact core of a star, when it collapses to a critical density, suddenly turns off or shields its gravitational field. The core, if its mass exceeds an upper limit, directly collapses into a black hole. Otherwise, the extremely large pressure, as the gravity is turned off, immediately stops the collapse and drives the mantle material of supernova moving outward, which leads to an impulsive explosion and forms a neutron star as a remnant. A neutron star can further evolve into a black hole when it accretes enough matter from a companion star such that the total mass exceeds a lower limit. The black hole in the K-K theory is gravitationless at the surface because the scalar field is infinitely strong, which varies the equivalent gravitational constant to zero. In general, a star, at the end of its evolution, is relatively harder to collapse into a gravitationless K-K black hole than a strong gravitational Schwarzschild black hole. This is consistent with the observation of some very massive stars to form neutron stars rather than expected black holes. In addition, the gravitationless K-K black hole should be easier to generate jets than a Schwarzschild black hole.  相似文献   

14.
Primordial black holes(PBHs) are a profound signature of primordial cosmological structures and provide a theoretical tool to study nontrivial physics of the early Universe.The mechanisms of PBH formation are discussed and observational constraints on the PBH spectrum,or effects of PBH evaporation,are shown to restrict a wide range of particle physics models,predicting an enhancement of the ultraviolet part of the spectrum of density perturbations,early dust-like stages,first order phase transitions and stages of superheavy metastable particle dominance in the early Universe.The mechanism of closed wall contraction can lead,in the inflationary Universe,to a new approach to galaxy formation,involving primordial clouds of massive BHs created around the intermediate mass or supermassive BH and playing the role of galactic seeds.  相似文献   

15.
Pulsars are presently believed to be rotating neutron stars with frozen-in magnetic fields. Because of the high density of neutron stars, general relativistic effects are important since they effect both the structure and stability of such stars. Besides this, the magnetic field outside the star is also affected. Instead of falling of asr (2+l) as in flat space, it is shown that each magnetic multipole varies as a hypergeometric function of radius. A closed form of these hypergeometric functions is given in terms of Legendre functions of the second kind. If the mass of a neutron star exceeds about 2.4m , the star becomes unstable and coliapses. For a quasistatically collapsing body, it is shown that the magnetic field seen by a distant observer vanishes as the radius approaches the gravitational radius.This work was supported in part by the Air Force Office of Scientific Research, Office of Aerospace Research under AFOSR Grant 70-1866.  相似文献   

16.
Primordial black holes (PBHs) are a profound signature of primordial cos-mological structures and provide a theoretical tool to study nontrivial physics of the early Universe. The mechanisms of PBH formation are discussed and observational constraints on the PBH spectrum, or effects of PBH evaporation, are shown to re-strict a wide range of particle physics models, predicting an enhancement of the ul-traviolet part of the spectrum of density perturbations, early dust-like stages, first or-der phase transitions and stages of superheavy metastable particle dominance in the early Universe. The mechanism of closed wall contraction can lead, in the inflation-ary Universe, to a new approach to galaxy formation, involving primordial clouds of massive BHs created around the intermediate mass or supermassive BH and playing the role of galactic seeds.  相似文献   

17.
We present new approaches to the simulation of stellar collapse, the formation of black holes, and explosive core-collapse supernova nucleosynthesis that build upon open-source codes and microphysics. We discuss the new spherically-symmetric general-relativistic (GR) collapse code GR1D that is endowed with an approximate 1.5D treatment of rotation, comes with multiple nuclear equations of state, and handles neutrinos with a multi-species leakage scheme. Results from a first set of spinning black hole formation simulations are presented. We go on to discuss the derivative code GR1D+N which is tuned for calculations of explosive nucleosynthesis and includes a NSE/non-NSE equation of state treatment, and a nuclear reaction network. We present sample results showing GR1D+N??s performance in reproducing previous results with thermal-bomb-driven explosions. Finally, we introduce the 3?+?1 GR Zelmani core collapse simulation package and present first results obtained in its application to the 3D modeling of failing core-collapse supernovae.  相似文献   

18.
In the course of obtaining three collapsing models of the charged viscous-fluid distribution, the dynamics of gravitational collapse are investigated with respect to them, and their physical and geometrical properties are studied critically, In all the cases, with a proper choice of the mass, the interior solution can be matched to the exterior Schwarzschild vacuum solution, thereby the solution being continuous at the boundary of the star. In all these models the matter inside is found to be radiating thus giving us the opportunity of identifying the gravitational collapse of a realistic astrophysical object. At the boundary of these model stars the matter distribution comes out to be that of dust and thereby comoving with respect to the coordinate system used. All the models are seen to be physically acceptable; they come out to be realistic models of collapsing astrophysical objects which will be of much interest in studying the phenomenon of black holes in this Universe.  相似文献   

19.
This paper explores the collapsing process of a unidirectional isotropic matter configuration. The junction conditions for a static exterior geometry and the non-static interior geometry are expressed in terms of the cosmological constant. The time-lapse for the appearance of the black hole and the cosmological horizon is calculated. It is observed that in the de-Sitter space, the unidirectional perfect fluid flow does not make the collapse disappear. The vacuum energy of the cosmological constant makes the collapsing process quite slow and affects the time-lapse of horizon formation. Moreover, the presence of string tension increases the time-lapse of horizon formation.  相似文献   

20.
We consider nearby young black holes formed after supernova explosions in close binaries whose secondary components are currently observed as the so-called runaway stars. Using data on runaway stars and making reasonable assumptions about the mechanisms of supernova explosion and binary breakup, we estimate the present positions of nearbyyoung black holes. For two objects, we obtained relatively small error regions (~50–100 deg2). The possibility of detecting these nearby young black holes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号