共查询到5条相似文献,搜索用时 62 毫秒
1.
2.
3.
及时准确的洪涝范围提取可以提高应急管理部门对于洪涝灾害的响应能力,减轻灾害影响。SAR遥感不受云雨影响,是洪涝灾害监测的有效工具。然而,由于卫星重返周期的限制,基于SAR的洪涝连续观测较难实现。在应急背景下,如何快速、实时进行洪涝范围提取是急需解决的问题。本文提出了一种结合遥感、VGI等多源数据的洪涝范围提取与模拟方法:(1)构建Albert+CNN的文本分类模型提取社交媒体洪涝信息;(2)基于异常值剔除方法利用社交媒体和OSM等VGI数据代替人工采样对Sentinel-1 SAR数据进行分类,提取洪涝范围;(3)结合社交媒体、水位数据等多源数据基于SNIC分割和成本距离等方法模拟无可用SAR数据时的洪涝淹没情况,提高洪涝的淹没范围提取频次。研究表明,本文基于Albert+CNN与异常值剔除的样本自动生成方法,可以有效辅助SAR数据的洪涝分类;利用VGI数据结合水情、DEM等多源数据进行了洪涝范围的模拟可以增加洪涝监测的时间分辨率。本研究有助于提高洪涝信息提取能力,为VGI支持洪涝灾害的应急管理提供参考。 相似文献
4.
DEM数据作为重要的基础地理信息数据,其数据完整性问题不容忽视。基于DEM数据完整性认证的要求,以及相关认证算法的欠缺,本文运用感知哈希技术设计了一种DEM数据认证算法,并可实现篡改定位。因DEM数据具有数据量大、细节丰富的特点,首先对其进行规则格网划分,将其划分为互不重叠的格网单元;然后对格网单元数据进行DCT分解,提取数据的特征信息以生成特征向量矩阵,并对特征向量矩阵进行摘要化处理;随后,使用Logistic混沌系统对简化后的特征向量矩阵进行置乱;对置乱矩阵进行量化、编码后,便可生成感知哈希序列。在数据认证时,首先计算原始数据与待验证数据的高程相对中误差,再将二者的感知哈希序列进行归一化汉明距离度量,结合判定阈值,即可对DEM数据进行数据认证与篡改定位。该算法对DEM数据的格式转换、水印嵌入等攻击有较强的鲁棒性,对各类改变内容的操作具有敏感性,并可实现DEM数据微小篡改的识别与定位。与已有的DEM完整性认证方法相比,将DEM数据的"内容"作为完整性度量的重要标准,在具体应用中更具有实用价值。 相似文献
5.
对比两种计算RMS值的方法,结合误差概率统计给出结果的误差概率分布。在使用有限脉冲响应(FIR)带通滤波器进行滤波并计算RMS值的过程中,滤波器窗口函数和阶数是影响计算结果误差的主要因素,其中阶数的作用更大。通过计算功率谱密度(PSD)反算RMS值的误差主要受pwelch函数的窗口函数类型、窗口长度及重叠率等参数影响,其中窗口长度作用更大。从同等误差水平的概率分布看,在合理设置参数的前提下,使用PSD反算RMS值的方法更优。 相似文献