首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The “overshoot scenario” is an emissions scenario in which CO2 concentration in the atmosphere temporarily exceeds some pre-defined, “dangerous” threshold (before being reduced to non-dangerous levels). Support for this idea comes from its potential to achieve a balance between the burdens of current and future generations in dealing with global warming. Before it can be considered a viable policy, the overshoot scenario needs to be examined in terms of its impacts on the global climate and the environment. In, particular, it must be determined if climate change cause by the overshoot scenario is reversible or not, since crossing that “dangerous” CO2 threshold could result in climate change from which we might not be able to recover. In this study, we quantify the change in several climatic and environmental variables under the overshoot scenario using a global climate model of intermediate complexity. Compared to earlier studies on the overshoot scenario, we have an explicit carbon cycle model that allows us to represent carbon-climate feedbacks and force the climate model more realistically with CO2 emissions rates rather than with prescribed atmospheric pCO2. Our standard CO2 emissions rate is calculated on the basis of historical atmospheric pCO2 data and the WRE S650 non-overshoot stabilization profile. It starts from the preindustrial year 1760, peaks in the year 2056, and ends in the year 2300. A variety of overshoot scenarios were constructed by increasing the amplitude of the control emissions peak but decreasing the peak duration so that the cumulative emissions remain essentially constant. Sensitivity simulations of various overshoot scenarios in our model show that many aspects of the global climate are largely reversible by year 2300. The significance of the reversibility, which takes roughly 200 years in our experiments, depends on the time horizon with which it is viewed or the number of future generations for whom equity is sought. At times when the overshoot scenario has emissions rates higher then the control scenario, the transient changes in atmospheric and oceanic temperatures and surface ocean pH can be significant, even for moderate overshoot scenarios that remain within IPCC SRES emissions scenarios. The large transient changes and the centennial timescale of climate reversibility suggest that the overshoot might not be the best mitigation approach, even if it technically follows the optimal economic path.  相似文献   

2.
Scenarios of land cover in China   总被引:3,自引:0,他引:3  
A method for surface modeling of land cover change (SMLC) is developed on the basis of establishing transition probability matrixes between land cover types and HLZ types. SMLC is used to simulate land cover scenarios of China for the years 2039, 2069 and 2099, for which HLZ scenarios are first simulated in terms of HadCM3 climatic scenarios that are downscaled in zonal model of spatial climate change in China. This paper also analyzes spatial distribution of land cover types, area change and mean center shift of each land cover type, ecotope diversity, and patch connectivity under the land cover scenarios. The results show that cultivated land would decrease and woodland would expand greatly with climatic change, which coincides with consequences expected by implementation of Grain-for-Green policy. Nival area would shrink, and desertification area would expand at a comparatively slow rate in future 100 years. Climate change would generally cause less ecotope diversity and more patch connectivity. Ecosystems in China would have a pattern of beneficial cycle after efficient ecological conservation and restoration. However, if human activities would exceed regulation capacity of ecosystems themselves, the ecosystems in China might deteriorate more seriously.  相似文献   

3.
Stabilization and global climate policy   总被引:1,自引:0,他引:1  
Academic and political debates over long-run climate policy often invoke “stabilization” of atmospheric concentrations of greenhouse gases (GHGs), but only rarely are non-CO2 greenhouse gases addressed explicitly. Even though the majority of short-term climate policies propose trading between gases on a global warming potential (GWP) basis, discussions of whether CO2 concentrations should be 450, 550, 650 or perhaps as much as 750 ppm leave unstated whether there should be no additional forcing from other GHGs beyond current levels or whether separate concentration targets should be established for each GHG. Here, we use an integrated modeling framework to examine multi-gas stabilization in terms of temperature, economic costs, carbon uptake and other important consequences. We show that there are significant differences in both costs and climate impacts between different “GWP equivalent” policies and demonstrate the importance of non-CO2 GHG reduction on timescales of up to several centuries.  相似文献   

4.
The anticipated change of climatic conditions within the next decades is thought to have far reaching consequences for agricultural cropping systems. The success of crop production in China, the world's most populous country, will also have effects on the global food supply. More than 30% of the cropping area in China is irrigated producing the major part of the agricultural production. To model the effects of climate change on irrigation requirements for crop production in China a high-resolution (0.25°, monthly time series for temperature, precipitation and potential evapotranspiration) gridded climate data set that specifically allows for the effects of topography on climate was integrated with digital soil data in a GIS. Observed long-term trends of monthly means as well as trends of interannual variations were combined for climate scenarios for the year 2030 with average conditions as well as ‘best case’ and ‘worst case’ scenarios.Regional cropping calendars with allowance for multiple cropping systems and the adaptation of the begin and length of the growing season to climatic variations were incorporated in the FAO water balance model to calculate irrigation amounts to obtain maximum yields for the period 1951–1990 and the climate scenarios.During the period 1951–1990 irrigation demand displayed a considerable variation both in temporal and spatial respects. Future scenarios indicate a varied pattern of generally increasing irrigation demand and an enlargement of the subtropical cropping zone rather than a general northward drift of all zones as predicted by GCM models. The effects of interannual variability appear to have likely more impact on future cropping conditions than the anticipated poleward migration of cropping zones.  相似文献   

5.
This paper examines the economic and ethical dimensions of climate policy in light of existing knowledge of the impacts of global warming and the costs of greenhouse gas emissions abatement. We find that the criterion of economic efficiency, operationalized through cost-benefit analysis, is ill-equipped to cope with the pervasive uncertainties and issues of intergenerational fairness that characterize climate change. In contrast, the concept of sustainable development—that today's policies should ensure that future generations enjoy life opportunities undiminished relative to the present—is a normative criterion that explicitly addresses the uncertainties and distributional aspects of global environmental change. If one interprets the sustainability criterion to imply that it is morally wrong to impose catastrophic risks on unborn generations when reducing those risks would not noticeably diminish the quality of life of existing persons, a case can be made for significant steps to reduce greenhouse gas emissions.  相似文献   

6.
This study aimed to disclose impacts of environment changes on hydrologic regimes in the Hei River Watershed, Shaanxi Province in China. We investigated the effects of the man-made landscape (Jingpen Reservoir) on the rainstorm–flood processes using a proposed Kinematic Wave model, simulated impacts of land use and cover changes on surface runoff generation and river flow characteristics at monthly, seasonal, and annual scales through designed scenarios of different combinations of land use and cover and climate conditions on basis of the SWAT model, evaluated the climate change and human activities effects on water balance from 1954 to 2001. Through these investigations, the following results were achieved. Firstly, it showed that the man-made landscape (the Jingpen Reservoir) had altered the rainstorm–flood process, the flood wave damped right after it flowed out the Jingpen Reservoir. Secondly, changes of land use and cover led to river flow redistribution, soil moisture and recharge fluctuations. Evapotranspiration increased 12.9%, river flow discharge decreased 17.7%, runoff generation process accelerated 1.31 times in 2000 than in 1986, and water resources of the total watershed decreased 7.7% in 2000 compared to the land use and cover scenario in 1986. Finally, the interaction between climate change and human activities led to the total water resource decreased by 10.6% in 2000 compared to that in 1986 in the Hei River Watershed.  相似文献   

7.
A typical question in climate change analysis is whether a certain observed climate characteristic, like a pronounced anomaly or an interdecadal trend, is an indicator of anthropogenic climate change or still in the range of natural variability. Many climatic features are described by one-dimensional index time series, like for instance the global mean temperature or circulation indices. Here, we present a Bayesian classification approach applied to the time series of the northern annular mode (NAM), which is the leading mode of Northern Hemisphere climate variability. After a pronounced negative phase during the 1950s and 1960s, the observed NAM index reveals a distinct positive trend, which is also simulated by various climate model simulations under enhanced greenhouse conditions. The objective of this study is to decide whether the observed temporal evolution of the NAM may be an indicator of global warming. Given a set of prior probabilities for disturbed and undisturbed climate scenarios, the Bayesian decision theorem decides whether the observed NAM trend is classified in a control climate, a greenhouse-gas plus sulphate aerosol climate or a purely greenhouse-gas induced climate as derived from multi-model ensemble simulations.The three climate scenarios are well separated from each other in terms of the 30-year NAM trends. The multi-model ensembles contain a weak but statistically significant climate change signal in the form of an intensification of the NAM. The Bayesian classification suggests that the greenhouse-gas scenario is the most probable explanation for the observed NAM trend since 1960, even if a high prior probability is assigned to the control climate. However, there are still large uncertainties in this classification result because some periods at the end of the 19th century and during the “warm” 1920s are also classified in an anthropogenic climate, although natural forcings are likely responsible for this early NAM intensification. This demonstrates a basic shortcoming of the Bayesian decision theorem when it is based on one-dimensional index time series like the NAM index.  相似文献   

8.
Today, most land surface process models have prescribed seasonal change of vegetation with regard to the exchange processes between land and the atmosphere. However, in order to consider the real interaction between vegetation and atmosphere and represent it best in a climate model, the vegetation growth process should be included. In other words, “life” should be brought into climate models. In this study, we have coupled the physical and biological components of AVIM (Atmosphere–Vegetation Interaction Model), a land surface model including plant ecophysiological processes, into the IAP/LASG L9 R15 GOALS GCM. To exhibit terrestrial vegetation information, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere, which is 7.5° longitude and 4.5° latitude. The simulated monthly mean surface air temperature and precipitation is close to the observations. The monthly mean Leaf Area Index (LAI) is consistent with the observed data. The global annual mean net primary production (NPP) simulation is also reasonable. The coupled model is stable, providing a good platform for research on two-way interaction between land and atmosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

9.
Land fraction and the solar energy at the top of the atmosphere (solar constant) may have been significantly lower early in Earth's history. It is likely that both of these factors played some important role in the climate of the early earth. The climate changes associated with a global ocean(i.e. no continents) and reduced solar constant are examined with a general circulation model and compared with the present-day climate simulation. The general circulation model used in the study is the NCAR CCM with a swamp ocean surface. First, all land points are removed in the model and then the solar constant is reduced by 10% for this global ocean case.Results indicate that a 4 K increase in air temperature occurs with global ocean simulation compared to the control. When solar constant is reduced by 10% under global ocean conditions a 23 K decrease in air temperature is noted. The global ocean warms much of the troposphere and stratosphere, while a reduction in the solar constant cools the troposphere and stratosphere. The largest cooling occurs near the surface with the lower solar constant.Global mean values of evaporation, water vapor amounts, absorbed solar radiation and the downward longwave radiation are increased under global ocean conditions, while all are reduced when the solar constant is lowered. The global ocean simulation produces sea ice only in the highest latitudes. A frozen planet does not occur when the solar constant is reduced—rather, the ice line settles near 30° of latitude. It is near this latitude that transient eddies transport large amounts of sensible heat across the ice line acting as a negative feedback under lower solar constant conditions keeping sea ice from migrating to even lower latitudes.Clouds, under lower solar forcing, also act as a negative feedback because they are reduced in higher latitudes with colder atmospheric temperatures allowing additional solar radiation to reach the surface. The overall effect of clouds in the global ocean is to act as a positive feedback because they are slightly reduced thereby allowing additional solar radiation to reach the surface and increase the warming caused by the removal of land. The relevance of the results to the “Faint-Young Sun Paradox” indicates that reduced land fraction and solar forcing affect dynamics, heat transport, and clouds. Therefore the associated feedbacks should be taken into account in order to understand their roles in resolving the “Faint-Young Sun Paradox”.  相似文献   

10.
This paper used the Lesotho Highlands Water Project (LHWP) that transfers water from the Orange River Basin in Lesotho to the Vaal River Basin in South Africa as a case study to show how environmental sustainability aspects can be integrated into economic development planning. Using the Ecological Social Accounting Matrix (ESAM) for Lesotho that integrates ecological implications of the LHWP with economic benefits of the project, the paper analysed the impact of lost ecological services downstream the LHWP dams in Lesotho on the well-being of households directly affected by the project (riparians) and the general economy of the country. The results revealed that despite significant economic benefits, the project has unintended impacts on ecological resources and services with resultant deleterious well-being implications for riparians. The results from the ESAM analysis indicated that not only the income of riparians is likely to suffer, but also that of other households and social groups, as well as the general economy of Lesotho. While results of the ESAM analysis did not indicate large income impacts on the economy at large, they were significant for riparians. The importance of integrating ecological consequences into impact assessment of IBWT before such transfers can be implemented to ensure sustainable development and considering economy-wide impacts associated with IBWT was proven necessary for a holistic impact assessment of IBWT.  相似文献   

11.
This paper analyses the effect of environmental changes observed in the 20th century on hydrology and water management in the southern Pyrenees, in terms of land use and climate. Moreover, a projected water-resource scenario for the 21st century is presented and discussed. Our results demonstrate that changes in precipitation, temperature, and snow accumulation, together with an increase in vegetation density in headwater regions, have led to a marked reduction in water availability in the region. Water resource managers have introduced major changes to dam operations to meet increasing water demand for irrigation purposes in lowland areas. Climatic and land-cover scenarios for the next century indicate that the sustainability of the equilibrium between available resources and water demand will be seriously threatened. These changes predicted for the Pyrenees may be representative of the changes that will occur within many other Mediterranean mountain sectors with similar climatic and socio-economic conditions.  相似文献   

12.
This study simulates water resources in the Tien Shan alpine basins to forecast how global and regional climate changes would affect river runoff. The model employed annual mean values for the major characteristics of the water cycle: annual air temperature, precipitation, evapotranspiration and river runoff. The simulation was based on 304 hydro-meteorological stations, 23 precipitation sites, 328 high altitudinal points with glaciological measurements, 123 stream-gauges, and 54 evaporation sites, and it took into account topography. The findings were simulated over Tien Shan relief using a 1:500,000 scale 100 m grid resolution Digital Elevation Model. An applicable GIS-based distributed River Runoff Model was implemented in regional conditions and tested in the Tien Shan basins. The annual evapotranspiration exceeds the river runoff in the Tien Shan watersheds particularly up to 3700 m. Hypothetical climate-change scenarios in the Tien Shan predict that by 2100 river runoff will increase by 1.047 times with an increase in air temperature averaging 3 °C and an increase in precipitation averaging 1.2 times the current levels. Change in precipitation, rather than temperature, is the main parameter determining river runoff in the Tien Shan. The maximum ratio for predicted river runoff could reach up to 2.2 and the minimum is predicted to be 0.55 times current levels. This possibly dramatic change in river runoff indicates on non-linear system response caused mainly by the non-linear response of evapotranspiration from air temperature and precipitation changes. In the frame of forecasted possible climate change scenarios the probability of river runoff growth amounts 83–87% and probability of this decline is 17–13% by 2100 in the Tien Shan River basins.  相似文献   

13.
Many scientists are striving to identify and promote the policy implications of their global change research. Much basic research on global environmental change cannot advance policy directly, but new projects can determine the relevance of their research to decision makers and build policy-relevant products into the work. Similarly, many ongoing projects can alter or add to the present science design to make the research policy relevant. Thus, this paper shows scientists working on global change how to make their research policy relevant. It demonstrates how research on physical global change relates to human dimensions studies and integrated assessments. It also presents an example of how policy relevance can be fit retroactively into a global change project (in this case, SRBEX—the Susquehanna River Basin Experiment) and how that addition can enhance the project's status and science. The paper concludes that policy relevance is desirable from social and scientific perspectives.  相似文献   

14.
The effect of gateways on ocean circulation patterns in the Cenozoic   总被引:1,自引:0,他引:1  
Both geological data and climate model studies indicate that substantially different patterns of the global ocean circulation have existed throughout the Cenozoic. In a climate model study of the late Oligocene [von der Heydt, A., Dijkstra, H.A. (2006). Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography, 21, PA1011] a “northern sinking” type of circulation was found, with (shallow) deep water formation in both the North Pacific Ocean and the North Atlantic Ocean. This is in contrast to the present-day “conveyor” circulation, where there is deep water formation in the North Atlantic but not in the North Pacific. In order to explain these differences, we use an ocean general circulation model for idealized two-basin flows and study the effect of asymmetries in the continental geometry on the circulation patterns. Two types of asymmetry are considered: (i) the relative northward extent of the Pacific and the Atlantic basin, and (ii) the existence of a circum-global gateway at low latitudes. The more northward extent of the Pacific basin in the Oligocene makes the Conveyor solution less likely and facilitates deep water formation in the North Pacific compared to the North Atlantic. The low-latitude gateway on the other hand, allows salinity and heat exchange between the two main ocean basins and therefore leads to deep water formation in both the North Atlantic and the North Pacific.  相似文献   

15.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

16.
Inverse and direct methods have been used to analyze a large number of borehole temperature logs in order to infer past climatic changes. Results indicate a warming of 1–2°C in eastern and central Canada during the past 150 years. A period of cooling between 500 and 200 years before present, corresponding to the time of the “Little Ice Age”, has also been identified in the same areas. A regional ground temperature history is estimated for eastern and central Canada from the simultaneous inversion of several temperature logs. The inferred temperature changes appear correlated with the concentration of atmospheric carbon dioxide as reported from a Greenland ice core, and agree with existing meteorological and dendrochronological records for the area.  相似文献   

17.
Using a recently developed global vegetation distribution, topography, and shorelines for the Early Eocene in conjunction with the Genesis version 2.0 climate model, we investigate the influences that these new boundary conditions have on global climate. Global mean climate changes little in response to the subtle changes we made; differences in mean annual and seasonal surface temperatures over northern and southern hemispheric land, respectively, are on the order of 0.5°C. In contrast, and perhaps more importantly, continental scale climate exhibits significant responses. Increased peak elevations and topographic detail result in larger amplitude planetary 4 mm/day and decreases by 7–9 mm/day in the proto Himalayan region. Surface temperatures change by up to 18°C as a direct result of elevation modifications. Increased leaf area index (LAI), as a result of altered vegetation distributions, reduces temperatures by up to 6°C. Decreasing the size of the Mississippi embayment decreases inland precipitation by 1–2 mm/day. These climate responses to increased accuracy in boundary conditions indicate that “improved” boundary conditions may play an important role in producing modeled paleoclimates that approach the proxy data more closely.  相似文献   

18.
During the last half of the 20th century, cumulative annual discharge from 137 representative rivers (watershed areas ranging from 0.3 to 6300 × 103 km2) to the global ocean remained constant, although annual discharge from about one-third of these rivers changed by more than 30%. Discharge trends for many rivers reflected mostly changes in precipitation, primarily in response to short- and longer-term atmospheric–oceanic signals; with the notable exception of the Parana, Mississippi, Niger and Cunene rivers, few of these “normal" rivers experienced significant changes in either discharge or precipitation. Cumulative discharge from many mid-latitude rivers, in contrast, decreased by 60%, reflecting in large part impacts due to damming, irrigation and interbasin water transfers. A number of high-latitude and high-altitude rivers experienced increased discharge despite generally declining precipitation. Poorly constrained meteorological and hydrological data do not seem to explain fully these “excess” rivers; changed seasonality in discharge, decreased storage and/or decreased evapotranspiration also may play important roles.  相似文献   

19.
Assuming steady state of carbon dioxide levels in a “pressure-cooker” atmosphere/ocean system (10–20 bars, near 100°C) produced by a land weathering sink and volcanic source (BLAG model), an abiotic Earth model for 3.8 Ga requires present biotic enhancements of weathering to be on the order of 100 or greater, consistent with the limit inferred from experimental and field studies. Using a plausible ratio of the present biotic enhancement (from higher plants) to enhancements produced by microbial activity alone, along with models for continental growth and outgassing rates consistent with geologic evidence, we find that computed surface temperatures hover near 20°C over geologic time, slowly decreasing to present, after a rapid initial decline as a result of microbial colonization of land. Results are consistent with the first possibility for glaciation in the late Archean/early Proterozoic. Useful modeling of climatic evolution, taking into account biotic enhancement of weathering, can now apparently be extended into the Precambrian, assuming operation of the carbonate-silicate buffer.  相似文献   

20.
Since October 1990, 3 weeks after the launch of the Ulysses spacecraft, the dust detector onboard recorded impacts of cosmic dust particles. Besides dust impacts, the detector recorded noise from a variety of sources. So far, a very rigid scheme had been applied to eliminate noise from impact data. The data labeled “big” dust impacts previously led to the identification of interstellar dust and of dust streams from Jupiter. The analysis presented here is concerned with data of signals of small amplitudes which are strongly contaminated by noise. Impacts identified in this data set are called “small” impacts. It is shown that dust impacts can be clearly distinguished from noise for most of the events due to the multi-coincidence characteristics of the instrument. 516 “small” impacts have been identified. For an additional 119 events, strong arguments can be given that they are probably small dust impacts. Thereby, the total number of dust impacts increases from 333 to 968 in the time period from 28 October 1990 to 31 December 1992. This increase permits a better statistical analysis, especially of the Jupiter dust streams which consist mostly of small and fast particles. Additional dust streams have been identified between the already known streams before and after Jupiter flyby. The dependence of the deflection from the Jupiter direction, the stream intensity and width on Jupiter distance support the assertion that they have been emitted from the Jovian system. The masses of the 635 “small” dust particles range from 6 × 10−17 to 3 × 10−10 g with a mean value of 1 × 10−12 g, which compares to a range from 1 × 10−16 to 4 × 10−9 g with a mean value of 2 × 10−11 g for the previously identified 333 “big” dust particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号