首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the parameters of shock-acoustic waves (SAW) generated during rocket launchings. We have developed the interferometric method for determining SAW parameters (including angular characteristics of the wave vector, and the SAW phase velocity, as well as the direction towards the source) using GPS-arrays. Contrary to the conventional radio-probing techniques, the proposed method provides an estimate of SAW parameters without a priori information about the site and time of a rocket launching. The application of the method is illustrated by a case study of ionospheric effects from launchings of rockets PROTON, SOYUZ and SPACE SHUTTLE from Baikonur and Kennedy Space Center cosmodromes in 1998–2000. In spite of a difference of rocket characteristics, the ionospheric response for all launchings had the character of an N-wave corresponding to the form of a shock wave. The SAW period T is 270–360 s, and the amplitude exceeds the standard deviation of total electron content background fluctuations in this range of periods under quiet and moderate geomagnetic conditions by factors of 2–5 as a minimum. The angle of elevation of the SAW wave vector varies from 30° to 60°, and the SAW phase velocity (900–1200 m/s) approaches the sound velocity at heights of the ionospheric F-region maximum. The position of the SAW source, inferred by neglecting refraction corrections, corresponds to the segment of the rockets path at a distance no less than 200–900 km from the launch pad, and to the rocket flying altitude no less than 100 km. Our data are consistent with the existing view that SAW are generated during a nearly horizontal flight of the rocket with its engine in operation in the acceleration segment of the path at 100–130 km altitudes in the lower atmosphere.  相似文献   

2.
New ionospheric activity indices are derived from automatically scaled online data from several European ionosonde stations. These indices are used to distinguish between normal ionospheric conditions expected from prevailing solar activity and ionospheric disturbances caused by specific solar and atmospheric events (flares, coronal mass ejections, atmospheric waves, etc.). The most reliable indices are derived from the maximum electron density of the ionospheric 2-layer expressed by the maximum critical frequency foF 2. Similar indices derived from ionospheric M(3000)2 values show a markedly lower variability indicating that the changes of the altitude of the 2-layer maximum are proportionally smaller than those estimated from the maximum electron density in the 2-layer. By using the ionospheric activity indices for several stations the ionospheric disturbance level over a substantial part of Europe (34°N–60°N; 5°W–40°E) can now be displayed online.  相似文献   

3.
The foF2 data obtained at Alma-Ata and Observatorio Del Ebro during the winter/spring of 2003–2004 are analyzed to compare and investigate the upper ionosphere variability at the two selected sites. The geomagnetic activity and the middle stratosphere dynamics, involving planetary wave (PW) activity, are analyzed for understanding the physical conditions and processes that can explain the observed ionospheric variability. By applying the same method of wavelet analysis to the data sets and doing a direct comparison of the results, two types of foF2 disturbances were found. The first type is 2–7-day oscillations, which appeared during periods of increased geomagnetic activity. The second type is oscillations arising from PW activity in the lower atmosphere. These consist of (1) 6–11-day oscillations arising from PW activity in lower atmospheric regions developed during the final stratosphere warming and indicating the timing of the transition from the winter to the summer circulation and (2) 9–13-day and 8–10-day oscillations mostly during the quiet level of geomagnetic activity, indicating a likely close relation with those in the geopotential height at the 1 hPa level for westward-propagating waves at 40°N, which strengthened during stratosphere warming events in January 2004. The time delay of the oscillations in the ΔfoF2 with respect to those in the geopotential height is about 10 days and it seems that the assumed ionosphere response can occur under weakened eastward zonal wind or relatively weak westward zonal wind (V<30 m s−1).  相似文献   

4.
Millstone Hill ionospheric storm time measurements of the electron density and temperature during the ionospheric storms (15-16 June 1965; 29–30 September 1969 and 17–18 August 1970) are compared with model results. The model of the Earth’s ionosphere and plasmasphere includes interhemispheric coupling, the H+, O+(4S), O+(2D), O+(2P), NO+, O+2 and N+2 ions, electrons, photoelectrons, the electron and ion temperature, vibrationally excited N2 and the components of thermospheric wind.In order to model the electron temperature at the time of the 16 June 1965 negative storm, the heating rate of the electron gas by photoelectrons in the energy balance equation was multiplied by the factors 5–30 at he altitude above 700 km for the period 4.50-12.00 LT, 16 June 1965. The [O]/[N2] MSIS-86 decrease and vibrationally excited N2 effects are enough to account for the electron density depressions at Millstone Hill during the three storms. The factor of 2 (for 27–30 September 1969 magnetic storm) and the & actor 2.7 (for 16–18 August 1970 magnetic storm) reduction in the daytime peak density due to enhanced vibrationally excited N2 is brought about by the increase in the O++N2 rate factor.  相似文献   

5.
Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6–8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics (51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N, 77.0°E). Observations of the O (557.7 and 630.0 nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250 km were carried out at Irkutsk and of the O2(b1g+X3g) (0-1) emission originating from an atmospheric layer centered at altitude of 94 km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1 h and a wave front width of no less than 5000 km, while it traveled equatorward with a velocity of 200 m/s from 62°N to 38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630 nm emissions in the frequency range 0.4–4 mHz (250–2500 s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.  相似文献   

6.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

7.
The bases of the classification method of ionospheric disturbances caused by solar-geomagnetic activity on the basis of the critical frequency of the F2 layer are developed. Data for the total solar activity cycle from 1975 to 1986 were used for studying variations in the critical frequency of the ionospheric F2 layer. The critical frequency was measured at the Moscow ionospheric observatory (55°45′N, 37°37′E) at an interval of 1 h. The gaps in the critical frequency values were filled in by the cubic interpolation method. The solar activity level was estimated using the F10.7 index. The geomagnetic disturbance was determined using the Kp · 10, Dst, and AE indices. According to the developed classification, an index of ionospheric activity is introduced. An analysis of the obtained values of the index for years of solar activity minimum and maximum shows that an increase in the absolute values of the index as a rule occurs at an increase in global geomagnetic and/or auroral disturbances. This fact indicates the sufficient information content of the developed index for characterizing ionospheric activity in any season. Moreover, using the sign of the index, one can form an opinion regarding an increase or decrease in the concentration of the ionospheric F2 layer, because the values of the considered index correspond to real oscillations in the critical frequency of the midlatitude ionosphere.  相似文献   

8.
Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW) activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.  相似文献   

9.
The presence and persistence of an 18-day quasi-periodic oscillation in the ionospheric electron density variations were studied. The data of lower ionosphere (radio-wave absorption at equivalent frequency near 1 MHz), middle and upper ionosphere (critical frequencies f0E and f0F2) for the period 1970–1990 have been used in the analysis. Also, solar and geomagnetic activity data (the sunspot numbers Rz and solar radio flux F10.7 cm, and aN index respectively) were used to compare the time variations of the ionospheric with the solar and geomagnetic activity data. Periodogram, complex demodulation, auto- and cross-correlation analysis have been used. It was found that 18-day quasi-periodic oscillation exists and persists in the temporal variations of the ionospheric parameters under study with high level of correlation and mean period of 18–19 days. The time variation of the amplitude of the 18-day quasi-periodic oscillation in the ionosphere seems to be modulated by the long-term solar cycle variations. Such oscillations exist in some solar and geomagnetic parameters and in the planetary wave activity of the middle atmosphere. The high similarities in the amplitude modulation, long-term amplitude variation, period range between the oscillation of investigated parameters and the global activity of oscillation suggests a possible solar influence on the 18-day quasi-periodic oscillation in the ionosphere.  相似文献   

10.
A new single-station model (SSM) for monthly median values of the ionospheric parameters foF2 and M(3000)F2 has been developed. Fourier analysis provides a tool for decomposing the time-varying ionospheric parameters. The 12–month smoothed sunspot number R 12 was used as an external solar characteristic because of its availability and predictability. However, for the first time, the solar activity is described not only by R 12 , but also by the linear coefficient K R representing the tendency of the change of solar activity. A general non-linear approximation of the influence of the solar-cycle characteristics R 12 and K R and ionospheric parameters foF2 and M(3000)F2 was accepted. The new SSM is applied to several European stations and its statistical evaluation shows better results than the other two SSMs used in the paper. The approach described in the paper does not contradict the use of different synthetic ionospheric indices (as the T-index, MF2–index); the basic aim is to show only that using one additional new characteristic of the solar-cycle variations, such as K R , improves the monthly median model.  相似文献   

11.
We present the results derived from measuring fundamental parameters of the ionospheric response to the August 11, 1999 total solar eclipse. Our study is based on using the data from about 100 GPS stations located in the neighborhood of the eclipse totality phase in Europe. The eclipse period was characterized by a low level of geomagnetic disturbance (Dst-variation from −10 to −20 nT), which alleviated significantly the problem of detecting the ionospheric response to the eclipse. Our analysis revealed a well-defined effect of a decrease (depression) of the total electron content (TEC) for all GPS stations. The delay between minimum TEC values with respect to the totality phase near the eclipse path increased gradually from 4 min in Greenwich longitude (10:40 UT, LT) to 8 min at the longitude 16° (12:09 LT). The depth and duration of the TEC depression were found to be 0.2–0.3 TECU and 60 min, respectively. The results obtained in this study are in good agreement with earlier measurements and theoretical estimates.  相似文献   

12.
The method for estimating an ionospheric index of solar-activity (IISA) based on the processing of spacecraft radio signals is suggested. The IISA values have been obtained by comparison between the measured and calculated variations of radio-signal characteristics. To calculate the variations of radio-signal characteristics, the straight rays approximation and the solar-activity index (Wolf numbers W and/or values of F10.7 solar flux) as a control parameter of the ionospheric model have been used. The suggested method was tested using spacecraft radio signals from the radio-navigation system “CIKADA”. The reduced differences of phases (ΔΦ) for frequencies 150 and 400 MHz were measured and the same characteristics were calculated by integration along the ray of radio-wave propagation between the receiver and the satellite. The IRI-95 has been used as a background ionospheric model. The satellite co-ordinates were determined using the orbit parameters recorded in the navigation messages. Minimization of the difference measured and calculated ΔΦ using arbitrary time steps, or during whole time intervals of observation, gives the IISA corresponding the satellite pass. Daily IISA values were obtained by averaging over all communication contacts during a day (20–30 passes). Testing this approach based on the measurements during March/April 1997, 1998, shows that on magnetically quiet days differences between IISA and the primary solar activity indices are about 5%.  相似文献   

13.
The variations of the upper atmosphere air density during geomagnetic disturbances have been investigated by many authors. According to the analysis of satellite orbits, in most cases an increase in the air density may be observed when the indexA phas a maximum. Having ionospheric data from stations in Europe, Asia and Australia we might be able to study the global behaviour of the electron density in theF 2 region during such geomagnetic disturbances when an increase of the air density had been observed. In these cases we found, that at the peak of the ionospheric layer, the electron density decreased 0–3 days later than theA pmaximum.  相似文献   

14.
Summary The previous investigation of the probability of occurrence of largest earthquakes in the European area continued by applying the Gumbel theory of largest values to three periods 1901–1930, 1901–1955 and 1901–1967, respectively. The values of magnitudes which will be exceeded with the probabilityP=1%, 2% and 10% were determined from the lines fitting the distributions of magnitudes and corresponding probabilities for all three periods. It was assumed that the relationship between the differences M P% [k](67)=M k,P%M 67,P% (k=30, 55, 67) and the observation period follow the hyperbolic law. This tendency was used for the estimation of the probability line corresponding to an infinite observation period.Presented at The Sixth UMC Symposium on Geophysical Theory and Computers in Copenhagen in 1969.  相似文献   

15.
Summary The integral mean values of gravity on the surface W=W 0 , obtained from satellite observations with the use of harmonic coefficients[3, 7] and from terrestrial gravity measurements[12], are compared. The squares and products of the harmonic coefficients were neglected, with the exception of [J 2 (0) ] 2 , which was taken into account. The Potsdam correction and the geocentric constant are being discussed. The paper ties up with[13–15] and the symbols used are the same. The given problem was treated, e.g., in[2, 4, 6, 8–10]; in the present paper the values of gravity are compared directly.  相似文献   

16.
Summary The post-storm effect (PSE) of the December 16–18, 1971 geomagnetic storm is studied with the use of the ionospheric radio wave absorption measurements and f min data from a network of the GDR, USSR and Czechoslovak observatories. Only a high latitude effect of the storm was found. We found more significant absorption effects associated with later weaker enhancements of geomagnetic activity. The part played by the interplanetary magnetic field is demonstrated. A magnetospheric explanation of the observed variability of PSE based on the time-development of filling up the slot region is suggested.  相似文献   

17.
Results of studies of the wave structure of the critical frequencies of the ionospheric F2 layer with periods of planetary waves for two Asian stations—Irkutsk and Wuhan (China)—are presented. Estimates of the appearance frequency, amplitudes, and the lifetime of oscillations with periods typical of planetary waves (2–25 days) are obtained. It is shown that these characteristics depend on the season and place of observation. The appearance of joint periodicities in the critical frequencies at both stations, as well as in the planetary index of geomagnetic activity Ap, is noted.  相似文献   

18.
Summary The evolution of the opinions as to the problem of the triaxiality of the Earth in the period prior to satellite geodesy can be seen, e.g., in[1–18]. Recently the opinion has been voiced that triaxiality is a result of the mathematical treatment of data rather than reality[19–21], especially since this is a comparatively small parameter. This opinion is not in contradiction with the results of satellite observations[22–28], but the non-zero values of the harmonic coefficients of the second degree and second order are a reality, they yield a value of the equatorial flattening of about1/90 000, and the representation of the equatorial section by an ellipse is justified even if the harmonics n=3, k=1 and n=3, k=3 have amplitudes only about half as small, and some other parameters might occur with just as much justification besides triaxiality.  相似文献   

19.
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10–10−6) s−1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.  相似文献   

20.
Changes in the critical frequencies of the F2 layer at several midlatitude stations of ionospheric vertical sounding during a sharp depletion in atmospheric pressure under quiet solar and geomagnetic conditions are analyzed. It is shown that in such periods, the observed foF2 values differ from the mean values by approximately 10–15% and the deviations from the mean could be both negative (in the daytime hours) and positive (at night). Such variations in foF2 could be referred to the known class of ionospheric disturbances observed under a quiet geomagnetic situation, that is, to the so-called “Q-disturbances.” Analysis of wavelet spectra of foF2 variations shows the presence in the F region of oscillations of various periods (from 0.5 to 10 days). The decrease in the amplitude of daily variations during pressure depletion is found. Presumably, the observed effect is caused by the dynamic impact of waves formed in the lower atmosphere on the ionospheric F2 layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号