首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high‐resolution, high‐quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived 6Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non‐LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced by convective flows in the atmospheres of cool stars, and can mimic the presence of 6Li. We also discuss briefly the case of the carbon isotopic ratio in metal‐poor stars, and provide a new determination of the nickel isotopic ratios in the solar atmosphere. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The long period classical cepheid RZ Vel (HD 73502) is known to be a member of an OB association, Vel OB1 in Vela, and a high metallicity is ascribed to it by the photometric work of Eggen (1982). We have done an abundance analysis for this long period (P = 20.4 days) and hence young (age ≈ 1.80×107 yr) classical cepheid using high resolution CCD spectra with good S/N ratio. We have used a detailed model atmosphere method to derive the abundances of the light elements C, O, A1, S and of many Fe-peak elements and a few s-process elements. Our present work indicates near solar abundance for most of the elements for RZ Vel and hence we do not confirm the high metallicity derived photometrically by Eggen (1982) for this star  相似文献   

3.
The formation of Zr I and Zr II lines in stellar atmospheres under non-LTE conditions has been considered for the first time. A model zirconium atom has been composed using 148 Zr I levels, 772 Zr II levels, and the ground Zr III state. Non-LTE calculations have been performed for model atmospheres with T eff = 5500 and 6000 K, log g = 2.0 and 4.0, [M/H] = −3, −2, −1, 0. In the entire investigated range of parameters, the Zr I levels are shown to be underpopulated relative to their LTE populations in the line formation region. In contrast, the excited Zr II levels are overpopulated, while the ground state and lower excited levels of Zr II retain their LTE populations. Since the non-LTE effects cause the Zr I and Zr II spectral lines being investigated to weaken, the non-LTE corrections to the abundance derived from Zr I and Zr II lines are positive. For Zr II lines, they increase with decreasing metallicity and surface gravity up to 0.34 dex for the model with T eff = 5500, log g = 2.0, and [M/H] = −2. The non-LTE effects depend weakly on temperature. The non-LTE corrections for Zr I lines reach 0.33 dex for solar-metallicity models. Zr I and Zr II lines in the solar spectrum have been analyzed. The non-LTE zirconium abundances derived from lines in the two ionization stages are shown to agree between themselves within the error limits, while the LTE abundance difference is 0.28 dex. The zirconium abundance in the solar atmosphere (averaged over Zr I and Zr II lines) is log ɛZr,⊙ = 2.63 ± 0.07.  相似文献   

4.
We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute‐Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line‐by‐line analysis. Chromospheric emission‐line fluxes from Caii are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Sulphur is a volatile α ‐element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal‐poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal‐poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra‐red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal‐poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We determine abundances from the absorption spectrum of the magnetic Herbig Ae star HD 190073 (V1295 Aql). The observations are primarily from HARPS spectra obtained at a single epoch. We accept arguments that the presence of numerous emission lines does not vitiate a classical abundance analysis, though it likely reduces the achievable accuracy. Most abundances are closely solar, but several elements show departures of a factor of two to three, as an earlier study has also shown. We present quantitative measurements of more than 60 emission lines, peak intensities, equivalent widths, and FWHM's. The latter range from over 200 km s–1(Hα, He D3) down to 10–20 km s–1(forbidden lines). Metallic emission lines have intermediate widths. We eschew modeling, and content ourselves with a presentation of the observations a successful model must explain. Low‐excitation features such as the Na I D‐lines and [O I] appear with He I D3, suggesting proximate regions with widely differing Te and Ne as found in the solar chromosphere. The [O I] and [Ca II] lines show sharp, violet‐shifted features. Additionally, [Fe II] lines appear tobe weakly present in emission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In a previous paper by the present authors the theory of Anstee and O'Mara for the broadening of spectral lines of neutral atoms by collisions with hydrogen atoms was extended to singly ionized atoms. In this paper we apply the method to the resonance and triplet lines of ionized strontium, the infrared triplet of ionized barium, and the resonance lines of ionized beryllium. Analysis of five lines of ionized strontium, previously regarded as too strong for an abundance analysis, and two lines of neutral strontium results in a solar abundance of strontium of log( N Sr N H)+12=2.92±0.05, which is entirely consistent with the meteoritic value.  相似文献   

8.
We employ spectra of resolution 20–35000 of seven SC stars, four S stars, two Ba stars and two K–M stars to derive abundances of a variety of elements from Sr to Eu relative to iron. Special attention is paid to Rb and Tc, and to the ratio of the heavy s-process species to the light s-process elements. Abundances are derived in LTE, both by using model atmospheres in which the carbon and oxygen abundances are nearly equal and by using curves of growth. Spectrum synthesis is used for critical lines such as the 5924-Å line of Tc and the 7800-Å line of Rb. For most of the heavy-element stars the enhancement of the s-process elements is about a factor of 10. The ratio of the heavy to light s-process species is not far from solar, except for RR Her for which the same ratio is +0.45 dex. For Tc the blending by other lines is severe. While we have probably detected the 5924-Å line, we can only present abundances in the less-than-or-equal-to category. For Rb, whose abundance is sensitive to the 85Rb/87Rb ratio and hence to the neutron density during s-process production, we find a considerable range of abundances, indicating a neutron density from 106 to ≳108 cm−3 for the SC stars. For the four S stars the range is from 107 to ≳108 cm−3. Recent calculations by Gallino et al. show that neutron densities near 107 cm−3 favour the 13C source for neutrons, while densities greater than 108 cm−3 may be associated with neutrons from the 22Ne source.  相似文献   

9.
High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2–3 times higher than those derived from CELs – in H II regions – for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star‐forming dwarf and spiral galaxies at different redshifts. Additionally, high‐resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s‐elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E‐ELT will be of paramount interest to: (a) extend the studies of heavyelement recombination lines to low metallicity objects, (b) to extend abundance determinations of s‐elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this work, we present a study of the strong optical collisional emission lines of Ne and Ar in an heterogeneous sample of ionized gaseous nebulae for which it is possible to derive directly the electron temperature and hence the chemical abundances of Ne and Ar. We calculate using a grid of photoionization models new ionization correction factors for these two elements and we study the behaviour of Ne/O and Ar/O abundance ratios with metallicity. We find a constant value for Ne/O, while there seems to be some evidence for the existence of negative radial gradients of Ar/O over the discs of some nearby spirals. We study the relation between the intensities of the emission lines of [Ne  iii ] at 3869 Å and [O  iii ] at 4959 and 5007 Å. This relation can be used in empirical calibrations and diagnostic ratios extending their applicability to bluer wavelengths and therefore to samples of objects at higher redshifts. Finally, we propose a new diagnostic using [O  ii ], [Ne  iii ] and Hδ emission lines to derive metallicities for galaxies at high z .  相似文献   

11.
The eclipsing and double-lined spectroscopic binary system V453 Cygni consists of two early B-type stars, one of which is nearing the terminal age main sequence and one which is roughly halfway through its main-sequence lifetime. Accurate measurements of the masses and radii of the two stars are available, which makes a detailed abundance analysis both more interesting and more precise than for isolated stars. We have reconstructed the spectra of the individual components of V453 Cyg from the observed composite spectra using the technique of spectral disentangling. From these disentangled spectra, we have obtained improved effective temperature measurements of  27 900 ± 400  and  26 200 ± 500 K  , for the primary and secondary stars, respectively, by fitting non local thermodynamic equilibrium theoretical line profiles to the hydrogen Balmer lines. Armed with these high-precision effective temperatures and the accurately known surface gravities of the stars we have obtained the abundances of helium and metallic elements. A detailed abundance analysis of the primary star shows a normal (solar) helium abundance if the microturbulence velocity derived from metallic lines is used. The elemental abundances show no indication that CNO-processed material is present in the photosphere of this high-mass terminal age main-sequence star. The elemental abundances of the secondary star were derived by a differential study against a template spectrum of a star with similar characteristics. Both the primary and secondary components display elemental abundances which are in the ranges observed in the Galactic OB stars.  相似文献   

12.
We present first results of three‐dimensional numerical simulations of the non‐magnetic solar chromosphere, computed with the radiation hydrodynamics code CO5BOLD. Acoustic waves which are excited at the top of the convection zone propagate upwards into the chromosphere where the waves steepen into shocks. The interaction of the waves leads to the formation of complex structures which evolve on short time scales. Consequently, the model chromosphere is highly dynamical, inhomogeneous, and thermally bifurcated.  相似文献   

13.
In this work we investigate p‐mode power variation with solar atmosphere. To this aim, we use THÉMIS observations of the Na D1 (λ 5896 Å) and K (λ 7699 Å) spectral lines. While the formation heights of the K spectral line are essentially located in the photospheric layer, the formation heights of the Na D1 line span a much wider region: from photosphere up to chromosphere. Hence, we had the opportunity to infer p‐mode power variation up to the chromospheric layer. By analyzing power spectra obtained by temporal series at different points of the Na D1 and K spectral lines, we confirm and quantify the increase in p‐mode power towards higher atmospheric layers. Furthermore, the large span in formation heights of the Na D1 line induces a larger enhancement of p‐mode power with solar atmosphere compared to the K spectral line. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Abundances in Przybylski's star   总被引:1,自引:0,他引:1  
We have derived abundances for 54 elements in the extreme roAp star HD 101065. ESO spectra with a resolution of about 80 000, and S/N of 200 or more were employed. The adopted model has T eff=6600 K, and log( g )=4.2. Because of the increased line opacity and consequent low gas pressure, convection plays no significant role in the temperature structure. Lighter elemental abundances through the iron group scatter about standard abundance distribution (SAD) (solar) values. Iron and nickel are about one order of magnitude deficient while cobalt is enhanced by 1.5 dex. Heavier elements, including the lanthanides, generally follow the solar pattern but enhanced by 3 to 4 dex. Odd-Z elements are generally less abundant than their even-Z neighbours. With a few exceptions (e.g. Yb), the abundance pattern among the heavy elements is remarkably coherent, and resembles a displaced solar distribution.  相似文献   

15.
From high-resolution spectra a non-local thermodynamic equilibrium analysis of the Mg  ii 4481.2-Å  feature is implemented for 52 early and medium local B stars on the main sequence (MS). The influence of the neighbouring line Al  iii 4479.9-Å  is considered. The magnesium abundance is determined; it is found that  log ɛ(Mg) = 7.67 ± 0.21  on average. It is shown that uncertainties in the microturbulent parameter Vt are the main source of errors in  log ɛ(Mg)  . When using 36 stars with the most reliable Vt values derived from O  ii and N  ii lines, we obtain the mean abundance  log ɛ(Mg) = 7.59 ± 0.15  . The latter value is precisely confirmed for several hot B stars from an analysis of the Mg  ii 7877-Å  weak line. The derived abundance  log ɛ(Mg) = 7.59 ± 0.15  is in excellent agreement with the solar magnesium abundance  log ɛ (Mg) = 7.55 ± 0.02  , as well as with the proto-Sun abundance  log ɛ ps (Mg) = 7.62 ± 0.02  . Thus, it is confirmed that the Sun and the B-type MS stars in our neighbourhood have the same metallicity.  相似文献   

16.
We review published papers dealing with the formation of the silicon solar spectrum and its application for the diagnostics of the solar atmosphere. We pay particular attention to studies on determination of the solar abundance of silicon, its reliable estimation being required for solving the problem of solar metallicity. We analyze the effect of the errors of the oscillator strengths of spectral lines, damping constants, and rates of inelastic collisions with hydrogen atoms on the silicon abundance estimation errors. We also summarize the studies devoted to the investigation of the effect of the deviation from the local thermodynamic equilibrium, inhomogeneous structure of the solar atmosphere, and small-scale magnetic fields on the Si I line formation.  相似文献   

17.
《Solar physics》1995,162(1-2):233-290
The Coronal Diagnostic Spectrometer is designed to probe the solar atmosphere through the detection of spectral emission lines in the extreme ultraviolet wavelength range 150 – 800 . By observing the intensities of selected lines and line profiles, we may derive temperature, density, flow and abundance information for the plasmas in the solar atmosphere. Spatial and temporal resolutions of down to a few arcseconds and seconds, respectively, allow such studies to be made within the fine-scale structure of the solar corona. Futhermore, coverage of large wavelength bands provides the capability for simultaneously observing the properties of plasmas across the wide temperature ranges of the solar atmosphere.  相似文献   

18.
From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small‐scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal‐poor stars, and allow for studies of heavy elements (Z ≥ 38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal‐poor stars. This means that some elements cannot be studied in the visual‐redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. It is therefore important that the next generation of spectrographs are designed such that they cover a wide wavelength range and can observe a large number of stars simultaneously. Only then, we can gain the full information from stellar spectra, from both metal‐poor to metal‐rich ones, that will allow us to understand the aforementioned formation scenarios in greater detail. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi‐object spectrograph commissioned for the ESO VISTA 4 m‐telescope. While 4MOST is also intended for studies of active galactic nuclei, baryonic acoustic oscillations, weak lensing, cosmological constants, supernovae and other transients, we focus here on high‐density, wide‐area survey of stars and the science that can be achieved with high‐resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high‐resolution spectrograph, we find that a sampling of ≥2.5 (pixels per resolving element), spectral resolution of 18000 or higher, and a wavelength range covering 393–436 nm, is the most well‐balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (±0.1 dex) in the blue and allow us to confront the outlined scientific questions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This “decrease” with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO 5 BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations depend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not responsible for the systematic lowering of the solar abundances in recent years. The solar metallicity resulting from this analysis is Z=0.0153, Z/X=0.0209.  相似文献   

20.
We study the nature of the [Ti  ii ] and [Ni  ii ] emission from the so-called strontium filament found in the ejecta of η Carinae. To this purpose, we employ multilevel models of the Ti  ii and Ni  ii systems, which are used to investigate the physical condition of the filament and the excitation mechanisms of the observed lines. For the Ti  ii ion, for which no atomic data were previously available, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. It is found that the observed spectrum is consistent with the lines being excited in a mostly neutral region with an electron density of the order of 107 cm−3 and a temperature around 6000 K. In analysing three observations with different slit orientations recorded between 2000 March and 2001 November, we find line ratios that change among various observations, in a way consistent with changes of up to an order of magnitude in the strength of the continuum radiation field. These changes result from different samplings of the extended filament due to the different slit orientations used for each observation, and yield clues on the spatial extent and optical depth of the filament. The observed emission indicates a large Ti/Ni abundance ratio relative to solar abundances. It is suggested that the observed high Ti/Ni ratio in gas is caused by dust–gas fractionation processes and does not reflect the absolute Ti/Ni ratio in the ejecta of η Carinae. We study the condensation chemistry of Ti, Ni and Fe within the filament and suggest that the observed gas phase overabundance of Ti is likely the result of selective photoevaporation of Ti-bearing grains. Some mechanisms for such a scenario are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号