共查询到20条相似文献,搜索用时 0 毫秒
1.
H. Flores P. Goldoni F. Royer S. Piranomonte S.D. Vergani F. Onori E. Palazzi S. Covino S. Randich F. Hammer E. Pian S. Savaglio G. Tagliaferri 《Astronomische Nachrichten》2011,332(3):288-291
Using the integral field unit of X‐shooter at VLT, we have recovered the first velocity fields of GRB host galaxies at redshift <0.6. This facility is able to recover not only the velocity fields from almost all emission lines thanks to an unrivaled wavelength coverage, but also to recover maps of physical properties. We present the preliminary analysis of X‐shooter/IFU observations dedicated to the study of GRB host galaxies undertaken in the frame of the Italian‐French GTO program. Our goal is to understand the physical processes at the origin of the GRB by analyzing in detail the spatial distributions of the kinematics, metallicities, extinction, star‐formation, and how they are inter‐related (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
C.C. Thne J. Fynbo P. Goldoni A. de Ugarte Postigo S. Covino S. Campana the X‐shooter GRB collaboration 《Astronomische Nachrichten》2011,332(3):281-282
GRB 100219A at z = 4.667 has been the highest redshift gamma‐ray burst observed with the X‐shooter spectrograph up to now. The spectrum covering the range from 5000 to 24000 Å and a large number of absorption lines allows to make a detailed study of the interstellar medium in a high redshift galaxy. The ISM in the low ionisation state and the kinematics of the absorption line components reveal a complex velocity field. The metallicity measured from different absorption lines is around 0.1 solar. Other GRB hosts at redshift beyond ∼3 have similar metallicities albeit with a large scatter in the metallicity distribution. X‐shooter will allow us to determine metallicities of a larger number of GRB hosts beyond redshift 5, to probe the early chemical enrichment of the Universe and to study its evolution from redshift 2 to beyond 10 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
A. de Ugarte Postigo C.C. Thne P. Goldoni J.P.U. Fynbo the X‐shooter GRB collaboration 《Astronomische Nachrichten》2011,332(3):297-298
GRB 100418A was an intermediate duration GRB detected by Swift. It showed an initially dim optical afterglow that had a late increase in brightness, reaching its maximum several hours after the burst onset, unlike typical afterglows that peak tens of seconds after. It also displayed a bright X‐ray and radio counterpart. In this paper we present the observations of the afterglow obtained with X‐shooter. Three epochs were obtained, 0.4, 1.4, and 2.4 days after the burst. In these spectra, each covering the range from 3000 to 24800 Å, we detect abundant absorption features with 4 velocity components, and emission lines from the host galaxy with 2 additional velocity components. In one single velocity component, we detect a Fe II* 2396 Å fine structure feature which disappears from the first to the second epoch indicating that it is due to the effect of the GRB radiation on its environment. We consider it to be the closest absorption component to the GRB itself, for which we determine a redshift of z = 0.6239 ± 0.0002. From the Hα to [N II] ratio we determine a host galaxy metallicity of 0.5 solar (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
Using a theoretical model describing pulse shapes, we have clarified the relations between the observed pulses and their corresponding timescales, such as the angular spreading time, the dynamic time as well as the cooling time. We find that the angular spreading timescale caused by curvature effect of fireball surface only contributes to the falling part of the observed pulses, while the dynamic one in the co‐moving frame of the shell merely contributes to the rising portion of pulses provided the radiative time is negligible. In addition, the pulses resulted from the pure radiative cooling time of relativistic electrons exhibit properties of fast rise and slow decay (a quasi‐FRED) profile together with smooth peaks. Besides, we interpret the phenomena of wider pulses tending to be more asymmetric to be a consequence of the difference in emission regions. Meanwhile, we find the intrinsic emission time is decided by the ratios of lorentz factors and radii of the shells between short and long bursts. Based on the analysis of asymmetry, our results suggest that the long GRB pulses may occur in the regions with larger radius, while the short bursts could locate at the smaller distance from central engine. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
In this work we present the results of an investigation aimed at a search for an oscillatory phenomenon during short gamma‐ray bursts. The wavelet technique, used for this analysis, is applied to the data from the BATSE 3B catalogue. We have detected oscillations, which periods are found to be in the milliseconds range and their amplitudes up to dozens of percents. A possible scenario for such a phenomenon is the coalescence of stellar‐mass black holes and neutron stars. During the coalescence process the matter orbiting the black hole produces rapid, periodic phenomena. Such system will also emit gravitational waves which cause the orbital radius to decrease and leads to the emission of a chirp of radiation. Estimates lead to a timescale of milliseconds for the coalescence process and oscillation frequencies of hundreds of Hz. The gamma‐ray bursts considered in this paper, show both frequencies and survival times of oscillations close to the mentioned values. A chirp phenomenon is also present. We therefore argue in favor of the black hole – neutron star coalescence as a scenario for the production of short gamma‐ray bursts (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
6.
Spectral lag of gamma‐ray bursts caused by the intrinsic spectral evolution and the curvature effect
Assuming an intrinsic ‘Band’ shape spectrum and an intrinsic energy‐independent emission profile we have investigated the connection between the evolution of the rest‐frame spectral parameters and the spectral lags measured in gamma‐ray burst (GRB) pulses by using a pulse model. We first focus our attention on the evolution of the peak energy, E0,p, and neglect the effect of the curvature effect. It is found that the evolution of E0,p alone can produce the observed lags. When E0,p varies from hard to soft only the positive lags can be observed. The negative lags would occur in the case of E0,p varying from soft to hard. When the evolution of E0,p and the low‐energy spectral index α0 varying from soft to hard then to soft we can find the aforesaid two sorts of lags. We then examine the combined case of the spectral evolution and the curvature effect of fireball and find the observed spectral lags would increase. A sample including 15 single pulses whose spectral evolution follows hard to soft has been investigated. All the lags of these pulses are positive, which is in good agreement with our theoretical predictions. Our analysis shows that only the intrinsic spectral evolution can produce the spectral lags and the observed lags should be contributed by the intrinsic spectral evolution and the curvature effect. But it is still unclear what cause the spectral evolution (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
8.
S. Piranomonte S. D. Vergani F. Onori S. Savaglio E. Palazzi H. Flores S. Covino P. Goldoni S. Randich F. Hammer E. Pian G. Tagliaferri 《Astronomische Nachrichten》2011,332(3):283-287
Gamma‐ray bursts (GRBs) are the most powerful explosions since the formation of the Universe, associated with the death of massive stars or mergers of compact stellar objects. Several recent striking results strongly support the idea that host galaxies of GRBs are opening a new view on our understanding of galaxy formation and evolution, back to the very primordial universe at z ∼ 8. They form a unique sample of galaxies which cover a wide range of redshift, they are typically weak with low mass and unlike other methods they are not selected on luminosity. In recent years, thanks to the support of new generation instruments, multi‐band photometry and spectroscopy allow us to better investigate the properties of these host galaxies (e.g., stellar mass, age, SFR, metallicity), to study their possible evolution and to compare them with field galaxies and other classes of galaxies. GRB host spectroscopy is one of the main science drivers behind the X‐shooter spectrograph. In this paper, we present the first results of the program devoted to Italian‐French GTO multiband spectroscopy of GRB host galaxies with X‐shooter (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
10.
Gamma‐ray bursts (GRBs) are one of the most luminous events in the Universe. In addition, the Universe itself is almost transparent to γ ‐rays, making GRBs detectable up to very high redshifts. As a result, GRBs are very suitable to probe the cosmological parameters. This work shows the potential of long‐duration GRBs for measuring the cosmological parameters ΩM and ΩΛ by comparing the observed log N ‐log P distribution with the theoretical one. Provided that the GRBs rate and luminosity function are well determined, the best values and 1σ confidence intervals obtained are ΩM = 0.22+0.05–0.03 and ΩΛ = 1.06+0.05–0.10. Finally, a set of simulations show the ability of the method to measure ΩM and ΩΛ (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
Particle acceleration in relativistic shocks is not a very well understood subject. Owing to that difficulty, radiation spectra from relativistic shocks, such as those in gamma-ray burst (GRB) afterglows, have been often modelled by making assumptions about the underlying electron distribution. One such assumption is a relatively soft distribution of the particle energy, which need not be true always, as is obvious from observations of several GRB afterglows. In this paper, we describe modifications to the afterglow standard model to accommodate energy spectra which are 'hard'. We calculate the overall evolution of the synchrotron and Compton flux arising from such a distribution. We also model two afterglows, GRB010222 and GRB020813, under this assumption and estimate the physical parameters. 相似文献
12.
M. Modjaz 《Astronomische Nachrichten》2011,332(5):434-447
Long‐duration gamma‐ray bursts (GRBs) and type Ib/c supernovae (SNe Ib/c) are amongst nature's most magnificent explosions. While GRBs launch relativistic jets, SNe Ib/c are core‐collapse explosions whose progenitors have been stripped of their hydrogen and helium envelopes. Yet for over a decade, one of the key outstanding questions is what conditions lead to each kind of explosion in massive stars. Determining the fates of massive stars is not only a vibrant topic in itself, but also impacts using GRBs as star formation indicators over distances up to 13 billion light‐years and for mapping the chemical enrichment history of the universe. This article reviews a number of comprehensive observational studies that probe the progenitor environments, their metallicities and the explosion geometries of SN with and without GRBs, as well as the emerging field of SN environmental studies. Furthermore, it discusses SN2008D/XRT 080109 which was discovered serendipitously with the Swift satellite via its X‐ray emission from shock breakout and which generated great interest amongst both observers and theorists while illustrating a novel technique for stellar forensics. The article concludes with an outlook on how the most promising venues of research – with the many existing and upcoming large‐scale surveys such as PTF and LSST – will shed new light on the diverse deaths of massive stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
13.
Yi-Zhong Fan Zi-Gao Dai Yong-Feng Huang Tan Lu Department of Astronomy Nanjing University Nanjing 《中国天文和天体物理学报》2002,2(5):449-453
The optical flash accompanying GRB 990123 is believed to be powered by the reverse shock of a thin shell. With the best-fit physical parameters for GRB 990123 and the assumption that the parameters in the optical flash are the same as in the afterglow, we show that: 1) the shell is thick rather than thin, and we have provided the light curve for the thick shell case which coincides with the observation; 2) the theoretical peak flux of the optical flash accounts for only 3×10~-4 of the observed. In order to remove this discrepancy, the physical parameters, the electron energy and magnetic ratios, εe and εB, should be 0.61 and 0.39, which are very different from their values for the late afterglow. 相似文献
14.
15.
16.
During the last ten years, observations of long‐duration gamma‐ray bursts brought to the conclusion that at least a fraction of them is associated with bright supernovae of type Ib/c. In this talk, after a short review on the previously observed GRB‐SN connection cases, we present the recent case of GRB 100316/SN 2010bh. In particular, during the observational campaign of SN 2010bh, a pivotal role was played by VLT/X‐shooter, sampling with unique high quality data the spectral energy distribution of the early evolution phases from the UV to the K band (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
K. Wiersema 《Astronomische Nachrichten》2011,332(3):295-296
The spectra of the host galaxies of gamma‐ray bursts at low redshift generally show strong hydrogen lines of the Balmer, Paschen and Brackett series, in addition to strong nebular metal lines. In special cases the hosts can be resolved in separate star forming regions, and spatially resolved spectroscopy can be obtained. Generally, the three strongest Balmer lines are used to derive the reddening experienced by the emission lines of the host gas, assuming a Milky Way extinction curve, case B recombination and a fixed electron temperature. We demonstrate how the wide wavelength range of X‐shooter, in combination with a rigorous calibration strategy, can be used to fit explicitly for RV, Te, and AV simultaneously using a large number of H and He I recombination lines, explicitly corrected for stellar atmosphere absorption. This increases our understanding of extinction and absorption in starforming regions in GRB hosts. We use two GRB hosts as examples of the methods, outlining the advantages of using X‐shooter over other instruments (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
Wei-Hong Gao Da-Ming Wei Purple Mountain Observatory Chinese Academy of Sciences Nanjing National Astronomical Observatories Chinese Academy of Sciences Beijing 《中国天文和天体物理学报》2005,5(6):571-578
X-ray emission lines have been observed in X-ray afterglows of several γ-ray bursts (GRBs). It is a major breakthrough for understanding the nature of the progenitors. It has been proposed that the X-ray emission lines can be well explained by the Geometry-Dominated models, but in these models the illuminating angle is much larger than that of the collimated jet of the GRB. For GRB 011211, we have obtained an illuminating angle of about θ- 45°, while the angle of the GRB jet is only 3.6°. So we propose that the outflow of GRBs with emission lines should have two distinct components: a wide component that illuminates the reprocessing material and produces the emission lines and a narrow one that produces the GRB. Observations show the energy for producing the emission lines is higher than that of the GRB. In this case, when the wide component dominates the afterglows, a bump should appear in the GRB afterglow. For GRB 011211, the bump should occur within 0.05 days of the GRB, which is obviously too early for the observation to catch it. Alongside the X-ray emission lines there should also be a bright emission component between the UV and the soft X-rays. These features can be tested by the Swift satellite in the near future. 相似文献
19.
20.
Ting-Ting Gao Yong-Feng Huang Department of Astronomy Nanjing University Nanjing 《中国天文和天体物理学报》2006,6(3):305-311
The remnants of two gamma-ray bursts, GRB 030329 and GRB 041227, have been resolved by Very Long Baseline Interferometry observations. The radio counterparts were observed to expand with time. These observations provide an important way to test the dynamics of the standard fireball model. We show that the observed size evolution of these two events cannot be explained by a simple jet model, rather, it can be satisfactorily explained by the two-component jet model. It strongly hints that gamma-ray burst ejecta may have complicated structures. 相似文献