首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of an experimental study of the undrained behaviour of Changi sand under axisymmetric and plane-strain conditions are presented. K0 consolidated undrained plane-strain tests and K0 or isotropically consolidated triaxial tests on very loose and medium dense specimens were conducted. The undrained behaviour of sand at very loose and medium dense states under plane-strain conditions was characterised and compared with that under axisymmetric conditions. It was observed that the undrained behaviour of very loose and medium dense sand under plane strain is similar to that under axisymmetric conditions. However, because of the formation of shear bands in plane-strain tests, the post-peak behaviour of medium dense sand in plane strain is different from that in triaxial tests. It was also established that an instability line for plane-strain conditions can be defined in a way similar to that for axisymmetric conditions. Using the state parameter, a unified relationship between the normalised slope of instability line and the state parameters can be established for both axisymmetric and plane-strain conditions. Using this relationship, the instability conditions established under axisymmetric conditions can be used for plane-strain conditions.  相似文献   

2.
Experimental data are presented in this paper to study the strain-softening behaviour of sand under plane-strain conditions. K 0 consolidated strain path tests were conducted using a new plane-strain apparatus. The stress–strain behaviour of medium dense sand under plane-strain conditions was characterized. The test results show that the occurrence of pre-failure strain softening under plane-strain conditions is affected by the void ratio, the strain increment ratio and the initial effective confining stress. This is consistent with previous findings established under axisymmetric conditions. However, a pre-failure strain-softening behaviour in plane-strain tests conducted under high-confining stresses may consist of three stages, namely, material softening, banding softening, and ultimate state. This observation is different from that in triaxial tests where banding softening does not normally occur.  相似文献   

3.
Stress history is recognised to play a major role in determining stress–strain behaviour of soil in undrained shearing. Most experimental studies on the effects of stress history on undrained behaviour are mainly limited to clean sand. In this paper, an experimental study carried out to investigate the effect of stress history on the undrained behaviour of loose sand with a small amount of fines is presented. Four series of triaxial compression tests, with different types of drained stress histories to near-failure prior to commencement of undrained shearing, were conducted. The experimental results indicate that drained pre-shearing to near-failure affects significantly the undrained behaviour of loose sand. In general, the drained pre-shearing improves the subsequent undrained behaviour of loose sand to the extent that liquefaction may not occur. It is shown that the effect of drained pre-shearing cannot be explained by the reduction in void ratio induced by drained pre-shearing. However, for specimens subjected to drained pre-shearing, $ p_{{{\text{d}}0}}^{\prime } $ / $ p_{{{\text{u}}0}}^{\prime } $ can be used as a parameter for analysing the effects of preloading history. It is also shown that for different preloading histories that brought the same change in void ratio or state parameter, drained pre-shearing to near-failure is the most effective, whereas pre-compression alone is the least effective in improving subsequent undrained behaviour of loose sand.  相似文献   

4.
Geotechnical experiments show that Lode angle‐dependent constitutive formulations are appropriate to describe the failure of geomaterials. In the present study, we have adopted one such class of failure criteria along with a versatile constitutive relationship to theoretically analyze the effects of Lode angle on localized shear deformation or shear band formation in loose sand for both drained and undrained conditions. We determine the variation in the possible stress states for shear localization due to the introduction of Lode angle by considering the localized deformation as a bifurcation problem. Further, similar bifurcation analysis is performed for the stress states along a specific loading path, namely, plane strain compression at the constitutive level. In addition, the plane strain compression tests have been simulated as a boundary value finite element problem to see how Lode angle affects the post‐localization response. Results show that the inclusion of a Lode angle parameter within the failure criterion has considerable effects on the onset, plastic strain, and propagation of shear localization in loose sand specimens. For drained condition, we notice early inception of shear localization and multiple band formation when the Lode angle‐dependent failure criterion is used. Undrained localization characteristics, however, found to be independent of Lode angle consideration.  相似文献   

5.
Owing to imperfect boundary conditions in laboratory soil tests and the possibility of water diffusion inside the soil specimen in undrained tests, the assumption of uniform stress/strain over the sample is not valid. This study presents a qualitative assessment of the effects of non‐uniformities in stresses and strains, as well as effects of water diffusion within the soil sample on the global results of undrained cyclic simple shear tests. The possible implications of those phenomena on the results of liquefaction strength assessment are also discussed. A state‐of‐the‐art finite element code for transient analysis of multi‐phase systems is used to compare results of the so‐called ‘element tests’ (numerical constitutive experiments assuming uniform stress/strain/pore pressure distribution throughout the sample) with results of actual simulations of undrained cyclic simple shear tests using a finite element mesh and realistic boundary conditions. The finite element simulations are performed under various conditions, covering the entire range of practical situations: (1) perfectly drained soil specimen with constant volume, (2) perfectly undrained specimen, and (3) undrained test with possibility of water diffusion within the sample. The results presented here are restricted to strain‐driven tests performed for a loose uniform fine sand with relative density Dr=40%. Effects of system compliance in undrained laboratory simple shear tests are not investigated here. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
On the undrained strain-induced anisotropy of loose sand   总被引:1,自引:1,他引:0  
An experimental study was carried out to investigate the effects of previous deviatoric strain histories on the undrained behaviour of loose and saturated Toyoura sand and compared with known results of Hostun RF sand. From an initial isotropic stress state, recent deviatoric strain histories in the compression side of the triaxial plane were generated by a standard drained presheared cycle up to a specified mobilized stress ratio. Mainly, the fully liquefied, contractive, unstable and softening behaviour of loose sand was progressively transformed into the non-liquefied, dilative, fully stable and hardening behaviour of dense-like sand, while remaining within a narrow range of loose density. The paper validates and extends the current understanding of strain-induced anisotropy of loose sand. New experimental data support the directional dependency of the instability cone on the stress increment direction, suggest the bifurcation characteristics of loose sand and evidence the important role of past deviatoric strain histories.  相似文献   

7.
8.
在三轴条件下,对饱和土(砂土和黏土)进行排水与不排水条件下的冲击试验及冲击后再固结试验,对比研究了不同渗透性土在不同排水条件下的冲击动力响应和冲击后再固结性状。结果表明:饱和黏土不排水冲击时的孔隙水压力随冲击击数增加而升高并逐渐稳定,排水冲击时的孔隙水压力则是先达到峰值然后有所下降;砂土不排水冲击时的冲击能量对孔隙水压力影响最明显;饱和砂土不排水冲击时的轴向应变与冲击击数呈近似线性关系,饱和黏土冲击及饱和砂土排水冲击则呈近二次曲线关系;饱和砂土不排水冲击后再固结阶段的孔隙水压力立即消散为0,同时体变迅速增大到一定值;饱和黏土在冲击后再固结阶段的孔隙水压力在一定时间内逐渐消散完毕,同时体变逐渐增大;饱和黏土排水冲击时,冲击阶段产生的体变占冲击引起总体变的39%~49%,冲击后再固结阶段产生的体变占51%~61%;砂土和黏土的总体变均表现为排水冲击明显大于不排水冲击,改善冲击时的排水条件有利于提高加固效果。  相似文献   

9.
The shear band (SB) spacing phenomenon in geomaterials is addressed in this paper under plane strain extensional conditions. On the basis of sand box observations, a method is proposed for the prediction of the spacing between shear bands based on the so-called “bookshelf” deformation mechanism. The proposed method is based on the assumption that the material is softening inside the shear bands whereas outside the SB it undergoes elastic unloading. The underlying assumption for the prediction of SB spacing is that the material reaches the lowest possible energy rate. An analytical expression for the determination of the shear band spacing is presented taking into account the plane strain extensional deformation of the specimen. The friction due to the normal off-plane shear acting on the boundaries is then taken into account.  相似文献   

10.
The mathematical properties of diffuse and localized failure modes in fluid‐saturated sands are investigated. The granular medium is modeled as an elastoplastic solid, and a recently proposed set of scalar indices, here referred to as moduli of instability, is used to identify the onset of potential bifurcations of the incremental response. First, the analytical properties of these moduli are discussed, stressing their dependence on the kinematic constraints associated with the imposed deformation modes. Then, by using an elastoplastic model for sands, drained and undrained loading paths are simulated under axisymmetric, plane‐strain and simple shear conditions. For each deformation mode, the instability moduli are computed and monitored throughout the simulations, with the purpose of elucidating the consequences of changes in control conditions. In addition, it is illustrated that suitable linear transformations allow the same strategy to be used to perform drained or undrained shear band analyses and predict the interval of possible band inclinations. The final comparison against literature experiments on loose Hostun sand shows that the instability moduli are indicators of the loss of resistance against specific modes of deformation. As a result, they can be used to identify and explain a number of failure mechanisms that can be commonly observed in experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Modelling cyclic behaviour of granular soils under both drained and undrained conditions with a good performance is still a challenge. This study presents a new way of modelling the cyclic behaviour of granular materials using deep learning. To capture the continuous cyclic behaviour in time dimension, the long short-term memory (LSTM) neural network is adopted, which is characterised by the prediction of sequential data, meaning that it provides a novel means of predicting the continuous behaviour of soils under various loading paths. Synthetic datasets of cyclic loading under drained and undrained conditions generated by an advanced soil constitutive model are first employed to explore an appropriate framework for the LSTM-based model. Then the LSTM-based model is used to estimate the cyclic behaviour of real sands, ie, the Toyoura sand under the undrained condition and the Fontainebleau sand under both undrained and drained conditions. The estimates are compared with actual experimental results, which indicates that the LSTM-based model can simultaneously simulate the cyclic behaviour of sand under both drained and undrained conditions, ie, (a) the cyclic mobility mechanism, the degradation of effective stress and large deformation under the undrained condition, and (b) shear strain accumulation and densification under the drained condition.  相似文献   

12.
The effects of previous deviatoric strain histories on the undrained behaviour of very loose and saturated Hostun RF clean sand are investigated in this paper. From an initial isotropic stress state in the triaxial plane, strain histories are generated by isotropic consolidation followed by standard drained triaxial preshear or presheared cycle, either in compression or in extension, up to a desired value of axial strain or mobilized stress ratio. Deviatoric strain histories are achieved by having nearly the same void ratio at the beginning of the undrained shearing for all tested samples. Subsequent undrained behaviour in triaxial compression and extension is analyzed in detail. Previous deviatoric strain histories can progressively transform the compressive and unstable behaviour of loose sand into a dilative and stable behaviour of dense-like sand, while being loose. Experiments show a common response induced by recent strain histories in terms of effective stress paths, independently of the axial strain attained during the drained presheared cycle, a unique initial gradient of the effective stress paths, a progressive appearance of dilatancy, an evolution the undrained behaviour and a systematic partial static liquefaction associated with softer behaviour when sheared in the opposite direction of the initial presheared direction. This paper offers a comprehensive understanding of the mechanisms of a specialized induced anisotropy created by simple linear stress paths in the classical triaxial plane.  相似文献   

13.
火山岩坡残积土地区暴雨滑坡泥石流的形成机理   总被引:8,自引:0,他引:8  
暴雨条件诱发的浅层坡残积土质斜坡破坏的机理受控于土体在低有效围压条件下的应力应变特性。1993年11月4~5日,香港大屿山地区特大局部性暴雨导致在120km2范围内产生自然滑坡泥石流800余处,且绝大多数发生于火山岩风化坡残积土地区。本文对火山岩风化坡残积土开展了室内偏压固结不排水剪和偏压固结常剪应力排水剪试验,揭示了该类土的应力应变特性;在此基础上,分析了暴雨滑坡泥石流的形成机理和过程。  相似文献   

14.
A modification to the nonlinear Pastor–Zienkiewicz–Chan (PZC) constitutive model without any change in the number of model parameters is introduced in order to simulate stiffness degradation of dense sands at dynamic loading. The PZC model is based on generalized plasticity and was verified by good prediction of liquefaction and undrained behavior of saturated sand. The PZC is a robust model that can predict drained dynamic behavior of sands, especially stiffness increase in loose sand at reloading of dynamic loading. Yet, this model does not show stiffness degradation of dense sand at reloading. The modification is made through modifying the stress memory factor, H DM, which is multiplied by the plastic modulus, H L. This modification does not influence reloading behavior of loose sand. The modified PZC model is verified via results of drained cyclic tests. Two cyclic triaxial tests on loose and dense specimens, along with two cyclic plane strain tests on dense sand are utilized for validation. The model simulation shows that the modified PZC model is able to predict the stiffness degradation of dense sand at reloading well.  相似文献   

15.
陈育民  陈润泽  霍正格 《岩土力学》2019,40(10):3709-3716
为了分析剪切条件下零有效应力状态砂土的流动变形规律,对传统环剪仪进行了试样可视化改造,研制了透明环形剪切盒,通过对剪切盒膨胀性能分析及与标准砂的剪切试验对比,验证了环剪装置改造的合理性。通过分析不排水条件下饱和悬浮塑料砂的剪应力-应变曲线,发现其剪切强度具有应变软化的特性。通过分析环剪仪中饱和悬浮塑料砂试样的有效应力,证实了可视环剪试验中的土体基本处于零有效应力状态。开展了饱和悬浮塑料砂的流动变形可视环剪试验研究,结果表明:饱和悬浮塑料砂在固结不排水条件下剪切变形不连续,直接在剪切面发生断裂;在不固结不排水的条件下饱和悬浮塑料砂的剪切变形表现出流动形态,且与剪切速率有关:在低剪切速率下,剪切变形仅在剪切面处形成具有曲线轨迹的流动变形而在其他区域不发生变形;而在高剪切速率下剪切变形为整体的倾斜变形,符合黏性流体的流动变形特征。  相似文献   

16.
砂土的渐进破坏及其数值模拟   总被引:1,自引:1,他引:0  
蔡正银 《岩土力学》2008,29(3):580-585
紧密砂土在排水剪切过程中由于材料的应变软化特性,会出现变形局部化并伴随剪切带的产生。对此类问题进行数值模拟时会遇到很多困难,比如如何模拟紧砂的应变软化特性,如何处理有限元数值分析过程中刚度矩阵的非正定导致计算结果发散问题,以及如何处理应力不连续的问题,拟针对以上问题进行了探讨。  相似文献   

17.
Effect of Cement Type on the Mechanical Behavior of a Gravely Sand   总被引:1,自引:0,他引:1  
The behavior of a cemented gravely sand was studied using triaxial compression tests. Gypsum, Portland cement and lime were used as the cementing agents in sample preparation. The samples with different cement types were compared in equal cement contents. Three cement contents of 1.5%, 3.0% and 4.5% were selected for sample preparation. Drained and undrained triaxial compression tests were conducted in a range of confining pressures from 25 kPa to 500 kPa. Failure modes, shear strength, stress–strain behavior, volume and pore pressure changes were considered. The gypsum cement induced the highest brittleness in soil among three cement types while the Portland cement was found to be the most ductile cementing agent. In lower cement contents and lower confining pressures the soil cemented with Portland cement showed the highest shear strength. However, in the same range of cement content, the soil cemented with gypsum showed highest shear strength for highest tested confining stress. For higher cement contents the shear strength of soil cemented with Portland cement is higher than that for the two other cement types for the range of confining pressures tested in the present study. The samples cemented with lime had the least peak and ultimate shear strength and the highest pore pressure generation in undrained tests. Contrary to the soil cemented with lime, the brittleness of soil cemented with gypsum and Portland cement reduces in undrained condition. Finally it was found that the effect of cement type on the shear strength of cemented soils is more profound in drained condition compared to undrained state.  相似文献   

18.
Exploring the undrained induced anisotropy of Hostun RF loose sand   总被引:3,自引:3,他引:0  
The effects of recent history on the undrained behaviour of very loose and saturated Hostun RF clean sand are investigated in this paper. From an initial isotropic stress state in the triaxial plane, recent histories are generated by isotropic consolidation followed by standard drained triaxial preshear in compression, up to a desired value of axial strain or mobilized stress ratio, and unloading to an initial stress ratio. Subsequent undrained behaviour in triaxial compression is analysed in detail. This paper contributes to the traits explaining the progressive transformation of a compressive and unstable behaviour of loose sand into a dilative and stable behaviour of dense-like sand by previous history, while remaining in the same state of loose density. Experiments show a large pseudo-elastic domain induced by recent history in terms of effective stress paths, function of the initially mobilized stress ratio level, a unique initial gradient of the effective stress paths depending on the stress ratio at the beginning of the undrained shearing, a progressive appearance of dilatancy and a surprising evolution the undrained behaviour of loose sand. Experimental results evidence the important role of the recent deviatoric strain history, from any initial isotropic or anisotropic stress state. This paper also offers a comprehensive understanding of the history mechanisms created by simple linear stress paths with fixed direction in the classical triaxial plane.  相似文献   

19.
中主应力对饱和松砂不排水单调剪切特性的影响   总被引:7,自引:0,他引:7  
利用土工静力-动力液压-三轴扭转多功能剪切仪,针对相对密度为30 %的福建标准砂,在不排水条件下控制主应力方向、中主应力系数、平均主应力保持不变,进行了单调剪切试验。以此着重探讨了中主应力系数对相变有效内摩擦角、峰值有效内摩擦角及有效应力路径的影响。研究表明,中主应力系数对在不排水单调剪切条件下饱和松砂的强度参数具有显著的影响,而对有效应力路径及应力-应变关系发展模式影响较小。基于广义双剪强度准则,从理论上探讨了土的强度参数对于中主应力的依赖性,并与试验结果进行了对比。  相似文献   

20.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号