首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The biomass and production of phytoplankton and bacterioplankton was investigated in relation to the mesoscale structures found in the Algerian Current during the ALGERS'96 cruise (October 1996). Biological determinations were carried out in three transects between 0° and 2°E aimed at crossing a so-called event, formed by a coastal anticyclonic eddy associated with an offshore cyclonic eddy to the west. The concentration of chlorophyll a (Chl) was maximum (>1.2 mg m−3) within the cyclonic eddy and at the frontal zones between the Modified Atlantic Water (MAW) of the Algerian Current and the Mediterranean waters further north. Chl (total and >2 μm) was significantly correlated with proxies of nutrient flux into the upper layers. Autotrophic picoplankton and heterotrophic bacterial abundance and production presented clear differences between MAW and Mediterranean water, with higher values at those stations under the influence of the Algerian Current. In general, greater differences were observed in production than in biomass variables. The photosynthetic parameters (derived from P–E relationships) and integrated primary production (range 189–645 mg m−2 d−1) responded greatly to the different hydrological conditions. The mesoscale phenomena inducing fertilization caused a 2 to 3-fold increase in primary production rates. The relatively high values found within the cyclonic eddy suggest that, although short-lived in comparison with anticyclonic eddies, these eddies may produce episodic increases of biological production not accounted for in previous surveys in the region.  相似文献   

2.
The vertical distribution (0–900 m) of zooplankton biomass and indices of feeding (gut fluorescence, GF) and metabolism (electron transfer system, ETS) were studied across an anticyclonic eddy south of Gran Canaria Island (Canary Islands). Two dense layers of organisms were clearly observed during the day, one above 200 m and the other at about 500 m, coincident with the deep scattering layer (DSL). The biomass displacement due to interzonal migrants in the euphotic zone was more than 2-fold higher than that previously reported for the southern area of this archipelago. The gut flux estimated (0.14–0.44 mgC m−2 d−1) was similar to the values previously found in the Canaries. The respiratory flux outside the eddy (1.85 mgC m−2 d−1) was in the lower range of values reported for this area. Inside the eddy, migrant biomass and respiration rates were 2- and 4- fold higher than in the surrounding waters. Active flux mediated by diel vertical migrants inside the eddy (8.28 mgC m−2 d−1) was up to 53% of the passive carbon flux to the mesopelagic zone (15.8 mgC m−2 d−1). It is, therefore, suggested that the anticyclonic eddy enhanced both migration from deep waters and active flux.  相似文献   

3.
Hydrographic, geochemical, and direct velocity measurements along two zonal (7.5°N and 4.5°S) and two meridional (35°W and 4°W) lines occupied in January–March, 1993 in the Atlantic are combined in an inverse model to estimate the circulation. At 4.5°S, the Warm Water (potential temperature θ>4.5°C) originating from the South Atlantic enters the equatorial Atlantic, principally at the western boundary, in the thermocline-intensified North Brazil Undercurrent (33±2.7×106 m3 s−1 northward) and in the surface-intensified South Equatorial Current (8×106 m3 s−1 northward) located to the east of the North Brazil Undercurrent. The Ekman transport at 4.5°S is southward (10.7±1.5×106 m3 s−1). At 7.5°N, the Western Boundary Current (WBC) (17.9±2×106 m3 s−1) is weaker than at 4.5°S, and the northward flow of Warm Water in the WBC is complemented by the basin-wide Ekman flow (12.3±1.0×106 m3 s−1), the net contribution of the geostrophic interior flow of Warm Water being southward. The equatorial Ekman divergence drives a conversion of Thermocline Water (24.58⩽σ0<26.75) into Surface Water (σ0<24.58) of 7.5±0.5×106 m3 s−1, mostly occurring west of 35°W. The Deep Water of northern origin flows southward at 7.5°N in an energetic (48±3×106 m3 s−1) Deep Western Boundary Current (DWBC), whose transport is in part compensated by a northward recirculation (21±4.5×106 m3 s−1) in the Guiana Basin. At 4.5°S, the DWBC is much less energetic (27±7×106 m3 s−1 southward) than at 7.5°N. It is in part balanced by a deep northward recirculation east of which alternate circulation patterns suggest the existence of an anticyclonic gyre in the central Brazil Basin and a cyclonic gyre further east. The deep equatorial Atlantic is characterized by a convergence of Lower Deep Water (45.90⩽σ4<45.83), which creates an upward diapycnal transport of 11.0×106 m3 s−1 across σ4=45.83. The amplitude of this diapycnal transport is quite sensitive to the a priori hypotheses made in the inverse model. The amplitude of the meridional overturning cell is estimated to be 22×106 m3 s−1 at 7.5°N and 24×106 m3 s−1 at 4.5°S. Northward heat transports are in the range 1.26–1.50 PW at 7.5°N and 0.97–1.29 PW at 4.5°S with best estimates of 1.35 and 1.09 PW.  相似文献   

4.
A novel autonomous free-fall lander vehicle, with a capability down to 6000 m, was deployed off Cape Verde for studies on bioluminescence in the deep sea. The system was equipped with a high-sensitivity Intensified Silicon Intensified Target (ISIT) video camera, a programmable control-recording unit and an acoustic current meter with depth and temperature sensors. The ISIT lander was used in three modes: (1) free falling at 34 m min−1, with the camera looking downwards at a mesh screen, recording impacts of luminescent organisms to obtain a vertical profile down to the abyssal sea floor, sampling at >100 l s−1; (2) rotating, with the lander on the sea floor and the camera orienting to the bottom current using a servo-controlled turntable, impacts of luminescent organisms carried by the bottom current onto a mesh screen mounted 0.5 m in front of the camera were recorded to estimate abundance in the benthic boundary layer; (3) baited, with the camera focused on a bait placed on the sea floor.Profiles recorded abundance of luminescent organisms as 26.7 m−3 at 500–999 m depth, decreasing to 1.6 m−3 at 2000–2499 m and 0.5 m−3 between 2500 m and the sea floor at 4046 m, with no further detectable significant change with depth. Rotator measurements at a 0.5 m height above the sea floor gave a mean abundance of 0.47 m−3 in the benthic boundary layer at 4046 m and of 2.04 m−3 at 3200 m. Thirty five minutes after the bait was placed on the sea floor at 3200 m, bioluminescent fauna apparently arrived at the bait and produced luminescent displays at a rate of 2 min−1. Moving, flashing light sources were observed and luminescent material was released into the bottom current.  相似文献   

5.
A transect of CTD profiles crossing the North Atlantic Current (NAC) along WOCE line ACM6 near 42.5°N during August 1–7, 1993, provides geostrophic shear velocity profiles, which were absolutely referenced using simultaneous POGO transport float measurements and velocity measurements from a ship-mounted acoustic doppler current profiler (ADCP). The NAC absolute transport was 112±23×106 m3 s−1, which includes a portion of the transport of the Mann Eddy, a large permanent anticyclonic eddy commonly adjacent to the NAC. The NAC transport estimated relative to a level of no motion at the bottom would have underestimated the true total absolute transport by 20%. A surprisingly large 58×106 m3 s−1 flowed southward just inshore of the NAC. This flow, centered near 1500 dbars about 200 km offshore of the shelf-break, was fairly barotropic with a peak velocity of greater than 20 cm s−1, and the water mass characteristics were of Labrador Sea Water. These absolute transport observations suggest southward recirculation inshore of the NAC at 42.5°N and a stronger NAC than has previously been observed.  相似文献   

6.
In this study we estimate diffusive nutrient fluxes in the northern region of Cape Ghir upwelling system (Northwest Africa) during autumn 2010. The contribution of two co-existing vertical mixing processes (turbulence and salt fingers) is estimated through micro- and fine-structure scale observations. The boundary between coastal upwelling and open ocean waters becomes apparent when nitrate is used as a tracer. Below the mixed layer (56.15±15.56 m), the water column is favorable to the occurrence of a salt finger regime. Vertical eddy diffusivity for salt (Ks) at the reference layer (57.86±8.51 m, CI 95%) was 3×10−5 (±1.89×10−9, CI 95%) m2 s−1. Average diapycnal fluxes indicate that there was a deficit in phosphate supply to the surface layer (6.61×10−4 mmol m−2 d−1), while these fluxes were 0.09 and 0.03 mmol m−2 d−1 for nitrate and silicate, respectively. There is a need to conduct more studies to obtain accurate estimations of vertical eddy diffusivity and nutrient supply in complex transitional zones, like Cape Ghir. This will provide us with information about salt and nutrients exchange in onshore–offshore zones.  相似文献   

7.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

8.
The bathymetric distribution, abundance and diel vertical migrations (DVM) of zooplankton were investigated along the axis of the Cap-Ferret Canyon (Bay of Biscay, French Atlantic coast) by a consecutive series of synchronous net hauls that sampled the whole water column (0–2000 m in depth) during a diel cycle. The distribution of appendicularians (maximum 189 individuals m−3), cladocerans (maximum 287 individuals m−3), copepods (copepods<4 mm, maximum 773 individuals m−3, copepods>4 mm, maximum 13 individuals m−3), ostracods (maximum 8 individuals m−3), siphonophores (maximum >2 individuals m−3) and peracarids (maximum >600 individuals 1000 m−3) were analysed and represented by isoline diagrams. The biomass of total zooplankton (maximum 18419 μg C m−3, 3780 μg N m−3) and large copepods (>4 mm maximum 2256 μg C m−3, 425 μg N m−3) also were determined. Vertical migration was absent or affected only the epipelagic zone for appendicularians, cladocerans, small copepods and siphonophores. Average amplitude of vertical migration was about 400–500 m for ostracods, some hyperiids and mysids, and large copepods, which were often present in the epipelagic, mesopelagic, and bathypelagic zones. Large copepods can constitute more than 80% of the biomass corresponding to total zooplankton. They may play an important role in the active vertical transfer of carbon and nitrogen.  相似文献   

9.
In this paper we show how different water masses from a similar geographic region provide an explanation for perturbations in the signal of declining productivity at the Porcupine Abyssal Plain (PAP) study site in the Northeast Atlantic. Furthermore we show that the passage of these different water masses is affected by the filamentary instabilities of a cyclonic eddy just southwest of the PAP site. We describe a high-resolution spatial hydrographic survey conducted with a towed instrument package, complemented by biogeochemical sampling. Maximum rates of primary production of 110 mmol C m-2 d-1 seen at the centre of the survey area were associated with the passage of an eddy filament and were enhanced 3 fold relative to far-field conditions (∼36 mmol C m-2 d-1). The rotation and stirring influence of the eddy resulted in the sequential passage of 3 distinct water masses past the observation point. This understanding of the lateral stirring around the site enabled us to explain the sharp changes observed in daily primary production rates and other biogeochemical parameters. The spatial survey also revealed a fluorescence maxima associated with the cyclonic eddy that was laterally displaced northwards away from the core, an observation supportive of recent modelling studies.  相似文献   

10.
Five moorings ML1–ML5 were deployed on the slope of the Solomon Rise in the Melanesian Basin in the western North Pacific, northeastward at increasing water depths. We measured the velocities of the western branch current of the deep western boundary current (DWBC) and the upper deep current carrying the Lower and Upper Circumpolar Waters (LCPW, UCPW), respectively. The daily mean velocity data from 1–3 February 1999 to 24–26 February 2000 were analyzed, and variability of the DWBCs was clarified. Although the current meters did not entirely cover the western branch current of the DWBC composed of two or three streams, a stream of the western branch current was observed at a depth of 4700 m at ML4 or 4260 m at ML5 for more than half of the observation period. The stream had a mean velocity of 3.7 cm s−1 and alternated between ML4 and ML5 at 20- to 40-day intervals without occupying both of ML4 and ML5 simultaneously. This shows that the width of the stream is less than 120 km (distance between ML4 and ML5), and the position changes in a similar range. In contrast to the velocity of the eastern branch current of the DWBC, that of the western branch current did not decrease with decreasing depths to 4000 m. This reflects the vertical division into the branch currents by the bifurcation of the DWBC. The western branch current of the DWBC is located at the deep side of the countercurrent which was almost always observed at depths of 3880 and 4080 m at ML3. The countercurrent was thought to be the return flow of the western branch current that is partly reversed in the East Mariana Basin. The previous estimate of geostrophic transport of LCPW at the time of the mooring deployment was corrected to 1.4 Sv (106 m3 s−1) in the western branch current, 1.7 Sv in the countercurrent, and 1.1 Sv in the inflow to the East Caroline Basin. The upper deep current was located over the slope of the Solomon Rise with water depth less than 4500 m including ML1–ML3. It flowed at depths of approximately 2000–3500 m with the highest velocity in the middle of this layer and seldom reached the near-bottom where eddy-like disturbances existed. Its volume transport at the mooring deployment was 10.4 Sv. The upper deep current during the first half of the observation period had double cores divided by the countercurrent at ML1, whereas that during the second half had a single core, as the countercurrent at ML1 disappeared in early September 1999. The vector mean velocities of the upper deep current were 5.0 (2650 m, ML2) and 3.6 cm s−1 (1880 m, ML3) during the first half of the observation period and 7.0 cm s−1 (2670 m, ML1) during the second half; they ranged from 3 to 7 cm s−1. Similarly, those of the countercurrent at ML1 during the first half were 6.4, 3.8, 4.6 cm s−1 (2170, 2670, 3570 m).  相似文献   

11.
The water mass structure and circulation of the continental shelf waters west of the Antarctic Peninsula are described from hydrographic observations made in March–May 1993. The observations cover an area that extends 900 km alongshore and 200 km offshore and represent the most extensive hydrographic data set currently available for this region. Waters above 100–150 m are composed of Antarctic Surface Water and its end member Winter Water. Below the permanent pycnocline is a modified version of Circumpolar Deep Water, which is a cooled and freshened version of Upper Circumpolar Deep Water. The distinctive signature of cold and salty water from the Bransfield Strait is found at some inshore locations, but there is little indication of significant exchange between Bransfield Strait and the west Antarctic Peninsula shelf. Dynamic topography at 200 m relative to 400 m indicates that the baroclinic circulation on the shelf is composed of a large, weak, cyclonic gyre, with sub-gyres at the northeastern and southwestern ends of the shelf. The total transport of the shelf gyre is 0.15 Sv, with geostrophic currents of order 0.01 m s-1. A simple model that balances across-shelf diffusion of heat and salt from offshore Upper Circumpolar Deep Water with vertical diffusion of heat and salt across the permanent pycnocline into Winter Water is used to explain the formation of the modified Circumpolar Deep Water that is found on the shelf. Model results show that the observed thermohaline distributions across the shelf can be maintained with a coefficient of vertical diffusion of 10-4 m2 s-1 and horizontal diffusion coefficients for heat and salt of 200 and 1200 m2 s-1, respectively. When the effects of double diffusion are included in the model, the required horizontal diffusion coefficients for heat and salt are 200 and 400 m2 s-1, respectively.  相似文献   

12.
Sedimentation of particulate carbon from the upper 200–300 m in the central Greenland Sea from August 1993 to June 1995 was less than 2 g C m−2 yr−1. Daily rates of sedimentation of particulate organic carbon reached highest values of about 18 mg m−2 d−1 in fall 1994. For total particulate material, maximum rates of sedimentation of about 250 mg m−2 d−1 were recorded in spring and fall 1994. For chlorophyll equivalent, highest rates of sedimentation of about 140 μg m−2 d−1 were recorded in spring 1994. As reported in related investigations, the transient accumulation of DOC in surface waters during summer, as well as respiration and mortality of deep overwintering zooplankton stocks, appeared to dominate the fate of photosynthetically fixed organic carbon. The above processes may account for roughly 43 g C m−2 in the upper 200 m of the central Greenland Sea. For comparison, the seasonal deficit in dissolved inorganic carbon was reported to be about 23 g C m−2 in the upper 20 m of surface water, and estimates for new annual production were reported to be about 57 g C m−2. In our investigation, the biological carbon pump was not unusually effective in transporting carbon out of the productive surface layer.  相似文献   

13.
The vertical sinking flux of particulate Al, Fe, Pb, and Ba from the upper 250 m of the Labrador Sea has been estimated from measurements of 234Th/238U disequilibrium and the respective metal/234Th ratios in >53 μm size particles. 234Th-derived particulate metal fluxes include in situ scavenged metals, labile lithogenic metals, and metals derived from external input (e.g., atmospheric supply). In contrast to the POC/234Th ratio, particle size-fractionated (0.4–10 μm, 10–53 μm, and >53 μm) Al/234Th, Fe/234Th and Pb/234Th, and Ba/234Th ratios generally increase with depth and exhibit no systematic change with particle diameter. Sinking fluxes of particulate Al (2.47–22.3 μmol m−2 d−1), Fe (2.69–16.3 μmol m−2 d−1), Pb (2.85–70 nmol m−2 d−1), and Ba (0.13–2.1 μmol m−2 d−1) at 50 m (base of the euphotic zone) and 100 m (base of the mixed layer) are largely within the range of previous sediment trap results from other ocean basins. Estimates of the upper ocean residence time of Al (0.07–0.28 yr) and Pb (0.8–2.9 yr) are short compared to previously reported values. The settling rate of >53 μm particles calculated from the 234Th data ranges from 14 to 38 m d−1.  相似文献   

14.
The existence of a surface barotropic front-jet system at the confluence region off the eastern tip of Oman (Ras Al Hadd or RAH) is documented for 1994–1995 through advanced very high resolution radiometer (AVHRR) and acoustic Doppler current profiler (ADCP) observations. The thermal signature of this confluence is visible in 1995 between early May and the end of October, i.e., throughout the SW Monsoon and into the transition period between SW and NE Monsoons. The thermal characteristics are those of a NE-oriented front between cooler water of southern (upwelled) origin and warmer waters of northern Gulf of Oman origin. During the period when the thermal front is absent, ADCP data suggest that the confluence takes a more southward direction with Gulf of Oman waters passing RAH into the southeastern Oman coastal region. The thermal gradient is initially small (June–July) but later increases (August–October) into a front that exhibits small-scale instabilities. Surface current velocities within the jet, estimated by tracking these features in consecutive satellite images, are 0.5–0.7 m s−1 and in remarkable agreement with concurrent ADCP retrievals in which the seasonal maximum in velocity is 1 m s−1. ADCP observations collected during several US JGOFS cruises reveal a weakly baroclinic current in the confluence region that drives the waters into the offshore system. The fully developed jet describes a large meander that demarcates two counter-rotating eddies (cyclonic to the north and anticyclonic to the south of the jet) of approximately 150–200 km diameter. The southern eddy of this pair is resolved by the seasonally averaged, sea-level anomaly derived from TOPEX/Poseidon observations. During the SW Monsoon, the RAH Jet advects primarily cold waters along its path, but as soon as the wind system reverses with the transition to the intermonsoonal period, a warm current is rapidly established that advects the surface coastal waters of the Gulf of Oman offshore. In accordance with the interannual variation of the wind forcing phase, the reversal of the currents from NE to SW occurred earlier in 1994 than in 1995, confirming that the RAH Jet is integral part of the East Arabian Current. The transport of the Jet, estimated by combining SST information on the width with ADCP data on the velocity's vertical structure, is found to fluctuate between 2–8×106 m3 s−1 and its thickness between 150–400 m. These significant fluctuations are due to the time-variable partition of horizontal transport between eddies and the RAH Jet and are potentially important to the nutrient and phytoplankton budgets of the Arabian Sea.  相似文献   

15.
Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997–September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ∼3.3 nM O2 h−1 and a carbon demand of ∼4.5 gC m−2. Increase in 0–50 m integrated stocks of DO during summer implied a net community production of ∼20 gC m−2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O2 h−1) compared to summer (35.3±24.8 nM O2 h−1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ∼10-fold, and the cell-specific rate of leucine incorporation ∼5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l−1 h−1 during winter and 5.1±3.1 ngC l−1 h−1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m−3 d−1 in winter and 7.8±5.5 mgC m−3 d−1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m−3 d−1 in winter and 1.3±0.7 mgC m−3 d−1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.  相似文献   

16.
Sulfate reduction rate measurements by the 35SO42− core injection method were carried out in situ with a benthic lander, LUISE, and in parallel by shipboard incubations in sediments of the Black Sea. Eight stations were studied along a transect from the Romanian shelf to the deep western anoxic basin. The highest rates measured on an areal basis for the upper 0–15 cm were 1.97 mmol m−2 d−1 on the shelf and 1.54 mmol m−2 d−1 at 181 m water depth just below the chemocline. At all stations sulfate reduction rates decreased to values <3 nmol cm−3 d−1 below 15 cm depth in the sediment. The importance of sulfate reduction relative to the total mineralization of organic matter was very low, 6%, on the inner shelf, which was paved with mussels, and increased to 47% on the outer shelf at 100 m depth. Where the oxic–anoxic interface of the water column impinged on the sea floor at around 150 m depth, the contribution of sulfate reduction increased from >50% just above the chemocline to 100% just below. In the deep sea, mean sulfate reduction rates were 0.6 mmol m−2 d−1 corresponding to an organic carbon oxidation of 1.3 mmol m−2 d−1. This is close to the mean sedimentation rate of organic carbon over the year in the western basin. A comparison with published data on sulfate reduction in Black Sea sediments showed that the present results tend to be higher in shelf sediments and lower in the deep-sea than most other data. Based on the present water column H2S inventory and the H2S flux out of the sediment, the calculated turnover time of H2S below the chemocline is 2100 years.  相似文献   

17.
Dense communities of shallow-water suspension feeders are known to sidestep the microbial loop by grazing on ultraplankton at its base. We quantified the diet, rates of water processing, and abundance of the deep-sea hexactinellid sponge Sericolophus hawaiicus, and found that, like their demosponge relatives in shallow water, hexactinellids are a significant sink for ultraplankton. S. hawaiicus forms a dense bed of sponges on the Big Island of Hawaii between 360 and 460 m depth, with a mean density of 4.7 sponges m−2. Grazing of S. hawaiicus on ultraplankton was quantified from in situ samples using flow cytometry, and was found to be unselective. Rates of water processing were determined with dye visualization and ranged from 1.62 to 3.57 cm s−1, resulting in a processing rate of 7.9±2.4 ml sponge−1 s−1. The large amount of water processed by these benthic suspension feeders results in the transfer of approximately 55 mg carbon and 7.3 mg N d−1 m−2 from the water column to the benthos. The magnitude of this flux places S. hawaiicus squarely within the functional group of organisms that link the pelagic microbial food web to the benthos.  相似文献   

18.
First data on microbial respiration in the Levantine Sea are reported with the aim of assessing the distribution of oxidative processes in association with the main Mediterranean water masses and the changing physical structure determined by the Eastern Mediterranean Transient. Respiratory rates, in terms of metabolic carbon dioxide production, were estimated from measured electron transport system activities in the polygonal area of the Levantine Sea (32.5–36.5 N Latitude, 26.0–30.25 E Longitude) and at Station Geo’95, in the Ionian Sea (35°34.88 N; 17°14.99 E). At the Levantine Sea, the mean carbon dioxide production rate decreased from the upper to the deeper layers and varied from 22.0±12.4 μg C h−1 m−3 in the euphotic layer to 1.30±0.5 μg C h−1 m−3 in the depth range between 1600 and 3000 m. Significant differences were found among upper, intermediate and bottom layers. The euphotic zone supported a daily carbon dioxide production of 96.6 mg C d−1 m−2 while the aphotic zone (between 200 and 3000 m) sustained a 177.1 mg C d−1 m−2 carbon dioxide production. In Station Geo’95, the carbon dioxide production rates amounted to 170.4 and 102.2 mg C d−1 m−2 in the euphotic and aphotic zones, respectively. The rates determined in the identified water masses showed a tight coupling of respiratory processes and Mediterranean circulation patterns. The increasing respiratory rates in the deep layers of the Levantine Sea are explained by the introduction of younger waters recently formed in the Aegean Sea.  相似文献   

19.
Below the sill depth (at about 2400 m) of the Alpha-Mendeleyev ridge complex, the waters of the Canada Basin (CB) of the Arctic Ocean are isolated, with a 14C isolation age of about 500 yr. The potential temperature θ decreases with depth to a minimum θm≈−0.524°C near 2400 m, increases with depth through an approximately 300 m thick transition layer to θh≈−0.514°C, and then remains uniform from about 2700 m to the bottom at 3200–4000 m. The salinity increases monotonically with depth through the deep θm and transition layer from about 34.952 to about 34.956 and then remains uniform in the bottom layer. A striking staircase structure, suggestive of double-diffusive convection, is observed within the transition layer. The staircase structure is observed for about 1000 km across the basin and has been persistent for more than a decade. It is characterized by 2–3 mixed layers (10–60 m thick) separated by 2–16 m thick interfaces. Standard formulae, based on temperature and salinity jumps, suggest a double-diffusive heat flux through the staircase of about 40 mW m−2, consistent with the measured geothermal heat flux of 40–60 mW m−2. This is to be expected for a scenario with no deep-water renewal at present as we also show that changes in the bottom layer are too small to account for more than a small fraction of the geothermal heat flux. On the other hand, the observed interfaces between mixed layers in the staircase are too thick to support the required double-diffusive heat flux, either by molecular conduction or by turbulent mixing, as there is no evidence of sufficiently vigorous overturns within the interfaces. It therefore seems, that while the staircase structure may be maintained by a very weak heat flux, most of the geothermal heat flux is escaping through regions of the basin near lateral boundaries, where the staircase structure is not observed. The vertical eddy diffusivity required in these near-boundary regions is O(10−3) m2 s−1. This implies Thorpe scales of order 10 m. We observe what may be Thorpe scales of this magnitude in boundary-region potential temperature profiles, but cannot tell if they are compensated by salinity. The weak stratification of the transition layer means that the large vertical mixing rate implies a local dissipation rate of only O(10−10) W kg−1, which is not ruled out by plausible energy budgets. In addition, we discuss an alternative scenario of slow, continuous renewal of the CB deep water. In this scenario, we find that some of the geothermal heat flux is required to heat the new water and vertical fluxes through the transition layer are reduced.  相似文献   

20.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号