首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Reduced Emissions from Deforestation and forest Degradation (REDD+) mechanism of a future post-2012 global climate-change treaty would aim to give incentive to tropical countries to reduce deforestation and thus forest-carbon emissions. It would do so by crediting tropical countries for reducing deforestation relative to a baseline scenario describing carbon emissions and removals from forest-cover change expected in the absence of REDD+. Defining a credible and accurate baseline is both critical and challenging. One approach considered promising is spatial modelling to project forest-cover change on the basis of historical trends; yet few such projections have been validated at a national scale. We develop and validate a novel GEOMOD projection of forest-cover change in Panama over 2000–2008, based on trends over 1990–2000 and 25 drivers of forest-cover change. Compared with the actual landscape of 2008, our projection is 85.2% accurate at a 100-m pixel resolution. More error is attributable to the location of projected forest (8.6%) than to its area (6.2%). Accuracy was least where forest regeneration predominated (80%), and greatest where deforestation predominated (90%). Despite the sophistication of our projection, it is slightly less accurate than if we had assumed no forest-cover change over 2000–2008. We identify factors limiting projection accuracy, including the complexity of forest-cover change, the spatial variability of forest-carbon density, and the relatively small area of change at the national scale. We conclude that, with the exception of contexts where forest-cover change is significant and straightforward and where forest-carbon density relatively uniform (e.g., agricultural frontiers), spatially projected baselines are of limited value for REDD+ – their accuracy is too limited given their relative lack of transparency. Simpler, relatively coarse scale, retrospective baselines are recommended instead.  相似文献   

2.
Reconciling food, fiber and energy production with biodiversity conservation is among the greatest challenges of the century, especially in the face of climate change. Model-based scenarios linking climate, land use and biodiversity can be exceptionally useful tools for decision support in this context. We present a modeling framework that links climate projections, private land use decisions including farming, forest and urban uses and the abundances of common birds as an indicator of biodiversity. Our major innovation is to simultaneously integrate the direct impacts of climate change and land use on biodiversity as well as indirect impacts mediated by climate change effects on land use, all at very fine spatial resolution. In addition, our framework can be used to evaluate incentive-based conservation policies in terms of land use and biodiversity over several decades. The results for our case study in France indicate that the projected effects of climate change dominate the effects of land use on bird abundances. As a conservation policy, implementing a spatially uniform payment for pastures has a positive effect in relatively few locations and only on the least vulnerable bird species.  相似文献   

3.
Armed conflicts trigger region-specific mechanisms that affect land use change. Deforestation is presented as one of the most common negative environmental impacts resulting from armed conflicts, with relevant consequences in terms of greenhouse gas emissions and loss of ecosystem services. However, the impact of armed conflict on forests is complex and may simultaneously lead to positive and negative environmental outcomes, i.e. forest regrowth and deforestation, in different regions even within a country. We investigate the impact that armed conflict exerted over forest dynamics at different spatial scales in Colombia and for the global tropics during the period 1992–2015. Through the analysis of its internally displaced population (departures) our results suggest that, albeit finding forest regrowth in some municipalities, the Colombian conflict predominantly exerted a negative impact on its forests. A further examination of georeferenced fighting locations in Colombia and across the globe shows that conflict areas were 8 and 4 times more likely to undergo deforestation, respectively, in the following years in relation to average deforestation rates. This study represents a municipality level, long-term spatial analysis of the diverging effects the Colombian conflict exerted over its forest dynamics over two distinct periods of increasing and decreasing conflict intensity. Moreover, it presents the first quantified estimate of conflict's negative impact on forest ecosystems across the globe. The relationship between armed conflict and land use change is of global relevance given the recent increase of armed conflicts across the world and the importance of a possible exacerbation of armed conflicts and migration as climate change impacts increase.  相似文献   

4.
The paper analyses land use trajectories in savannah woodlands in the Central-West Region, Burkina Faso and the Upper East Region in northern Ghana by use of satellite images and historical archives. Observed trends differ in terms of spatial location and correlation with population pressure from normally accepted characterizations. Colonial forestry policies are proposed as key determinants of present-day land use patterns. However, these reinforced pre-colonial land use patterns inasmuch as land gazetted as forest reserves were tracts affected by vectors of human and livestock disease. It is suggested that the transformation of wooded agricultural landscapes in the Sudano-Sahelian region is the outcome of historically and culturally embedded interactions between complex social, economic and ecological processes which operate at widely varying scales and which change over time; the implications hereof for modelling of global environmental issues is discussed.  相似文献   

5.
Despite recent success in reducing forest loss in the Brazilian Amazon, additional forest conservation efforts, for example, through ‘Reducing Emissions from Deforestation and Forest Degradation’ (REDD+), could significantly contribute to global climate-change mitigation. Economic incentives, such as payments for environmental services could promote conservation, but deforestation often occurs on land without crucial tenure-security prerequisites. Improving the enforcement of existing regulatory disincentives thus represents an important element of Brazil's anti-deforestation action plan. However, conservation law enforcement costs and benefits have been much less studied than for conditional payments. We develop a conceptual framework and a spatially explicit model to analyze field-based regulatory enforcement in the Brazilian Amazon. We validate our model, based on historical deforestation and enforcement mission data from 2003 to 2008. By simulating the current conservation law enforcement practice, we analyze the costs of liability establishment and legal coercion for alternative conservation targets, and evaluate corresponding income impacts. Our findings suggest that spatial patterns of both deforestation and inspection costs markedly influence enforcement patterns and their income effects. Field-based enforcement is a highly cost-effective forest conservation instrument from a regulator's point of view, but comes at high opportunity costs for land users. Payments for environmental services could compensate costs, but will increase budget outlays vis-à-vis a command-and-control dominated strategy. Both legal and institutional challenges have to be overcome to make conservation payments work at a larger scale. Decision-makers may have to innovatively combine incentive and disincentive-based policy instruments in order to make tropical forest conservation both financially viable and socially compatible.  相似文献   

6.
Terrestrial ecosystems provide a range of important services to humans, including global and regional climate regulation. These services arise from natural ecosystem functioning as governed by drivers such as climate, atmospheric carbon dioxide mixing ratio, and land-use change. From the perspective of carbon sequestration, numerous studies have assessed trends and projections of the past and future terrestrial carbon cycle, but links to the ecosystem service concept have been hindered by the lack of appropriate quantitative service metrics. The recently introduced concept of the Greenhouse Gas Value (GHGV) accounts for the land-atmosphere exchanges of multiple greenhouse gases by taking into consideration the associated ecosystem pool sizes, annual exchange fluxes and probable effects of natural disturbance in a time-sensitive manner.We use here GHGV as an indicator for the carbon sequestration aspects of the climate regulation ecosystem service, and quantify it at global scale using the LPJ-GUESS dynamic global vegetation model. The response of ecosystem dynamics and ecosystem state variables to trends in climate, atmospheric carbon dioxide levels and land use simulated by LPJ-GUESS are used to calculate the contribution of carbon dioxide to GHGV. We evaluate global variations in GHGV over historical periods and for future scenarios (1850–2100) on a biome basis following a high and a low emission scenario.GHGV is found to vary substantially depending on the biogeochemical processes represented in LPJ-GUESS (e.g. carbon–nitrogen coupling, representation of land use). The consideration of disturbance events that occur as part of an ecosystem's natural dynamics is crucial for realistic GHGV assessments; their omission results in unrealistically high GHGV. By considering the biome-specific response to current climate and land use, and their projections for the future, we highlight the importance of all forest biomes for maintaining and increasing biogeochemical carbon sequestration. Under future climate and carbon dioxide levels following a high emission scenario GHGV values are projected to increase, especially so in tropical forests, but land-use change (e.g. deforestation) opposes this trend. The GHGV of ecosystems, especially when assessed over large areas, is an appropriate metric to assess the contribution of different greenhouse gases to climate and forms a basis for the monetary valuation of the climate regulation service ecosystems provide.  相似文献   

7.
Climate and land use patterns are expected to change dramatically in the coming century, raising concern about their effects on wildfire patterns and subsequent impacts to human communities. The relative influence of climate versus land use on fires and their impacts, however, remains unclear, particularly given the substantial geographical variability in fire-prone places like California. We developed a modeling framework to compare the importance of climatic and human variables for explaining fire patterns and structure loss for three diverse California landscapes, then projected future large fire and structure loss probability under two different climate (hot-dry or warm-wet) and two different land use (rural or urban residential growth) scenarios. The relative importance of climate and housing pattern varied across regions and according to fire size or whether the model was for large fires or structure loss. The differing strengths of these relationships, in addition to differences in the nature and magnitude of projected climate or land use change, dictated the extent to which large fires or structure loss were projected to change in the future. Despite this variability, housing and human infrastructure were consistently more responsible for explaining fire ignitions and structure loss probability, whereas climate, topography, and fuel variables were more important for explaining large fire patterns. For all study areas, most structure loss occurred in areas with low housing density (from 0.08 to 2.01 units/ha), and expansion of rural residential land use increased structure loss probability in the future. Regardless of future climate scenario, large fire probability was only projected to increase in the northern and interior parts of the state, whereas climate change had no projected impact on fire probability in southern California. Given the variation in fire-climate relationships and land use effects, policy and management decision-making should be customized for specific geographical regions.  相似文献   

8.
In a meta-analysis we integrate peer-reviewed studies that provide quantified estimates of future projected ecosystem changes related to quantified projected local or global climate changes. In an advance on previous analyses, we reference all studies to a common pre-industrial base-line for temperature, employing up-scaling techniques where necessary, detailing how impacts have been projected on every continent, in the oceans, and for the globe, for a wide range of ecosystem types and taxa. Dramatic and substantive projected increases of climate change impacts upon ecosystems are revealed with increasing annual global mean temperature rise above the pre-industrial mean (ΔTg). Substantial negative impacts are commonly projected as ΔTg reaches and exceeds 2°C, especially in biodiversity hotspots. Compliance with the ultimate objective of the United Nations Framework Convention on Climate Change (Article 2) requires that greenhouse gas concentrations be stabilized within a time frame “sufficient to allow ecosystems to adapt naturally to climate change”. Unless ΔTg is constrained to below 2°C at most, results here imply that it will be difficult to achieve compliance. This underscores the need to limit greenhouse gas emissions by accelerating mitigation efforts and by protecting existing ecosystems from greenhouse-gas producing land use change processes such as deforestation.  相似文献   

9.
Production of commodities for global markets is an increasingly important factor of tropical deforestation, taking over smallholders subsistence farming. Measures to reduce deforestation and convert shifting cultivation systems towards permanent crops have recently been strengthened in several countries. But these changes have variable environmental and social impacts, including on ethnic minorities. In Vietnam, although a forest transition – i.e. shift from shrinking to expanding forest cover – occurred at the national scale, deforestation fronts and agricultural colonization for commodity crops – a.o. coffee – still dominated the Central Highlands plateaus. Previous studies suggested that the dominant land use changes in that region were on the one hand the acquisition and conversion of agricultural lands to perennial crops for external markets by capital-endowed Kinh households – the majority ethnic group in Vietnam – and on the other hand the corresponding displacement of poor households of ethnic minorities relying on shifting cultivation towards the forest margins. This study tested this hypothesis by using remote sensing to analyze land use and cover changes and deforestation trajectories in the coffee-growing area in Dak Lak and Dak Nong provinces over 2000–2010. Land use changes were linked with socioeconomic dynamics using secondary statistics and spatial modelling. Net deforestation reached ?0.31% y?1 of the total area between 2000 and 2010. Deforestation was indeed mainly directly caused by shifting cultivation for annual crops, but this was partly driven indirectly by expansion of coffee and other perennial crops over agricultural lands. Displacement of shifting cultivation into the forest margins, pushed by market crops expansion, was the spatial manifestation of the marginalization of local ethnic minorities and poor migrants, pushed by capital-endowed migrants. This marginalization is a long-standing process rooted in the colonization and development strategy for the highlands followed since colonial times. Over the late 2000s, rapid deforestation was strongly reducing the benefits of national-scale forest recovery, and might shift the country back to net losses of natural forest. Implications for policies that may affect deforestation are discussed.  相似文献   

10.
Soybean farming has brought economic development to parts of South America, as well as environmental hopes and concerns. A substantial hope resides in the decoupling of Brazil's agricultural sector from deforestation in the Amazon region, in which case expansive agriculture need not imply forest degradation. However, concerns have also been voiced about the potential indirect effects of agriculture. This article addresses these indirect effects for the case of the Brazilian Amazon since 2002. Our work finds that as much as thirty-two percent of deforestation, or the loss of more than 30,000 km2 of Amazon forest, is attributable, indirectly, to Brazil's soybean sector. However, we also observe that the magnitude of the indirect impact of the agriculture sector on forest loss in the Amazon has declined markedly since 2006. We also find a shift in the underlying causes of indirect land use change in the Amazon, and suggest that land appreciation in agricultural regions has supplanted farm expansions as a source of indirect land use change. Our results are broadly congruent with recent work recognizing the success of policy changes in mitigating the impact of soybean expansion on forest loss in the Amazon. However, they also caution that the soybean sector may continue to incentivize land clearings through its impact on regional land markets.  相似文献   

11.
Community forest management has been identified as a win-win option for reducing deforestation while improving the welfare of rural communities in developing countries. Despite considerable investment in community forestry globally, systematic evaluations of the impact of these policies at appropriate scales are lacking. We assessed the extent to which deforestation has been avoided as a result of the Indonesian government’s community forestry scheme, Hutan Desa (Village Forest). We used annual data on deforestation rates between 2012 and 2016 from two rapidly developing islands: Sumatra and Kalimantan. The total area of Hutan Desa increased from 750 km2 in 2012 to 2500 km2 in 2016. We applied a spatial matching approach to account for biophysical variables affecting deforestation and Hutan Desa selection criteria. Performance was assessed relative to a counterfactual likelihood of deforestation in the absence of Hutan Desa tenure. We found that Hutan Desa management has successfully achieved avoided deforestation overall, but performance has been increasingly variable through time. Hutan Desa performance was influenced by anthropogenic and climatic factors, as well as land use history. Hutan Desa allocated on watershed protection forest or limited production forest typically led to a less avoided deforestation regardless of location. Conversely, Hutan Desa granted on permanent or convertible production forest had variable performance across different years and locations. The amount of rainfall during the dry season in any given year was an important climatic factor influencing performance. Extremely dry conditions during drought years pose additional challenges to Hutan Desa management, particularly on peatland, due to increased vulnerability to fire outbreaks. This study demonstrates how the performance of Hutan Desa in avoiding deforestation is fundamentally affected by biophysical and anthropogenic circumstances over time and space. Our study improves understanding on where and when the policy is most effective with respect to deforestation, and helps identify opportunities to improve policy implementation. This provides an important first step towards evaluating the overall effectiveness of this policy in achieving both social and environmental goals.  相似文献   

12.
Impact of land use changes on surface warming in China   总被引:29,自引:1,他引:28  
Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12℃ (10 yr)- 1 increase for daily mean surface temperature, and the 0.20℃ (10 yr)- 1 and 0.03℃ (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes mayalso play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity.The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.  相似文献   

13.
Peru contains the fourth largest area of tropical forest in the world, yet faces a worsening net deforestation rate. In 2008, to address this threat, the national government announced its ambition to reduce deforestation to zero by 2021. Via literature review and key informant interviews, this study assess two years of REDD+ readiness preparations according to six readiness functions. A mixed pattern of outcomes emerge. Although significant advances were made by various local-level initiatives, national-level efforts continue to struggle. Three crucial challenges persist: (1) greater involvement and coordination of ministries and government agencies associated with REDD+ planning, (2) better understanding of deforestation agents and drivers, and (3) integration of REDD+ policies into national and regional plans, which includes clarification of safeguard procedures and design of incentive mechanisms. Integrated land use planning is presented as a platform to foster dialogue that helps to reconcile divergent stakeholder perspectives, coordinate changes to land use, and resolve overlapping land rights.

Policy relevance

This article presents the outcomes of a multi-dimensional assessment of the REDD+ readiness process in Peru. The six key functions in the analytical framework provide the opportunity to evaluate the process in an integrated and systematic manner and highlights the persistence of complex, transversal governance challenges across diverse economic sectors and government agencies. Research findings also reveal a need for policy change and continued investment to ensure success of the national process in Peru. Strong leadership is needed to generate consensus in cross-sectoral negotiations and to establish coordinated land governance and monitoring mechanisms.  相似文献   

14.
Oil palm production expanded 1.2 million hectares in sub-Saharan Africa since 1990, with expansion accelerating in several heavily forested countries since 2000. Despite a narrative of expansion driven by multinational corporations, we provide evidence of a dynamic non-industrial oil palm production sector linked to a burgeoning informal milling enterprise. Surveys were conducted with oil palm farmers in Cameroon (n = 546), the third largest palm oil producer on the continent with the greatest amount of deforestation due to recent expansion, to determine who is expanding into forest. Seventy-three percent of survey respondents reported clearing forest, the magnitude of which was explained by differences in milling strategies and supply chain integration. Large-scale, non-industrial producers played a disproportionate role in deforestation, many of which were engaged in informal supply chains through the use of non-industrial mills. Farms associated with more clearing tended to use high-yielding seedlings. Even the highest yielding farms, however, averaged only 7.7 tons fresh fruit bunches (FFBs) ha−1 yr−1, well below the potential 20 tons FFBs ha−1 yr−1 yield for Cameroon. We also found a strong relationship between deforestation and land claims. Most farms claimed ownership of their land, although only 5% had official land titles. Conservation challenges in the region arise from land tenure laws that incentivize forest clearing. This study sheds light on the role of informal supply chains in deforestation and highlights the need for strict implementation and enforcement of land use zoning policies.  相似文献   

15.
Illegal activity, such as deforestation for illicit crops for cocaine production, has been inferred as a cause of land change. Nonetheless, illicit activity is often overlooked or difficult to incorporate into causal inference models of land change. Evidence continues to build that narcotrafficking plays an important, yet often unreported, role in forest loss. This study presents a novel strategy to meet the challenge of estimating the causal effect of illicit activity in land change using consolidated news media reports to estimate the relationship between drug trafficking and accelerated forest loss in Central America. Drug trafficking organizations engage in illegal land transactions, money laundering, and territorial control that can manifest as forest conversion to agriculture or pasture land uses. Longitudinal data on 50 sub-national units over a period of 16 years (2001-2016) are used in fixed effects regressions to estimate the role of narcotrafficking in forest loss. Two narcotrafficking activity proxies were developed as explanatory variables of forest loss: i) an “official” proxy from drug seizures data within 14 sub-national units; and, ii) an “unofficial” proxy developed from georeferenced news media accounts of narcotrafficking events. The effect of narcotrafficking was systematically compared to the other well-known causes of forest loss, such as rural population growth and other conventional drivers. Both proxies indicate narcotrafficking is a statistically significant (p<0.01) contributor to forest loss in the region, particularly in Nicaragua (p<0.05, official proxy), Honduras (p<0.05, media proxy), and Guatemala (p<0.05, media proxy). Narcotrafficking variables explain an additional 5% (media proxy) and 9% (official proxy) of variance of forest loss not captured by conventional models. This study showed the ability of news media data to capture the signal of illicit activity in land use changes such as forest loss. The methods employed here could be used to estimate the causal effect of illicit activities in other land and environmental systems. Our results suggest that current drug policy, which concentrates drug trafficking in remote areas of very high cultural and environmental value, has helped to accelerate the loss of Central America's remaining forests.  相似文献   

16.
The conversion of tropical forests to croplands and grasslands is a major threat to global biodiversity, climate and local livelihoods and ecosystems. The enforcement of protected areas as well as the clarification and strengthening of collective and individual land property rights are key instruments to curb deforestation in the tropics. However, these instruments are territorial and can displace forest loss elsewhere. We investigate the effects of protected areas and various land tenure regimes on deforestation and possible spillover effects in Bolivia, a global tropical deforestation hotspot. We use a spatial Durbin model to assess and compare the direct and indirect effects of protected areas and different land tenure forms on forest loss in Bolivia from 2010 to 2017. We find that protected areas have a strong direct effect on reducing deforestation. Protected areas – which in Bolivia are all based on co-management schemes - also protect forests in adjacent areas, showing an indirect protective spillover effect. Indigenous lands however only have direct forest protection effects. Non-indigenous collective lands and small private lands, which are associated to Andean settlers, as well as non-titled lands, show a strong positive direct effect on deforestation. At the same time, there is some evidence that non-indigenous collective lands also encourage deforestation in adjacent areas, indicating the existence of spillovers. Interestingly, areas with high poverty rate tend to be less affected by deforestation whatever tenure form. Our study stresses the need to assess more systematically the direct and indirect effects of land tenure and of territorial governance instruments on land use changes.  相似文献   

17.
The lowlands of eastern and northeastern Bolivia are characterized by a transition between the humid evergreen forests of the Amazon Basin and the deciduous thorn-scrub vegetation of the Gran Chaco. Within this landscape lies one of the world’s best preserved areas: the ecoregion known as the Chiquitano dry forest, where deforestation patterns over a 30 year period were analyzed. Results indicate that the area of the natural cover was reduced from 97.21 % before 1976 to 82.10 % in 2008, causing significant change in the landscape, especially in the spatial configuration of forest cover. The density of forest fragments increased from 0.073 patches per 100 ha before 1976 to 0.509 in 2008, with a mean distance between patches of 151 and 210 m over the same period, leading to a considerable reduction in the fragment sizes, from 1,204 ha before 1976 to a mere 54 in 2008. This pattern, observed in forests, does not occur in the savannas because, on one hand the savanna area is much lower compared to that of forests, and on the other because the deforestation process tended to be concentrated within forested areas. Based on the observed patterns, it is possible that in the future the natural landscapes will be substituted principally by anthropic landscapes, if there is no change in the economic and land distribution policies. If this process continues, it will stimulate the expansion of mechanized agriculture and the colonization of new areas, which will lead to further deforestation and landscape fragmentation.  相似文献   

18.
 A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

19.
This study investigates the impact of global warming on the savannization of the tropical land region and also examines the relative roles of the impact of the increase of greenhouse gas concentration and future changes in land cover on the tropical climate. For this purpose, a mechanistic–statistical–dynamical climate model with a bidirectional interaction between vegetation and climate is used. The results showed that climate change due to deforestation is more than that due to greenhouse gases in the tropical region. The warming due to deforestation corresponds to around 60% of the warming in the tropical region when the increase of CO2 concentration is included together. However, the global warming due to deforestation is negligible. On the other hand, with the increase of CO2 concentration projected for 2100, there is a lower decrease of evapotranspiration, precipitation and net surface radiation in the tropical region compared with the case with only deforestation. Differently from the case with only deforestation, the effect of the changes in the net surface radiation overcomes that due to the evapotranspiration, so that the warming in the tropical land region is increased. The impact of the increase of CO2 concentration on a deforestation scenario is to increase the reduction of the areas covered by tropical forest (and a corresponding increase in the areas covered by savanna) which may reach 7.5% in future compared with the present climate. Compared with the case with only deforestation, drying may increase by 66.7%. This corroborates with the hypothesis that the process of savannization of the tropical forest can be accelerated in future due to global warming.  相似文献   

20.
土地利用变化对20世纪中国地区气候干湿变化的影响   总被引:2,自引:0,他引:2  
利用CMIP5耦合模式历史情景和土地利用情景结果,定量评估了模拟的土地利用变化对20世纪中国地区气候干湿变化的影响。结果表明,土地利用的变化加剧了20世纪中国地区干旱化的进程,其贡献约为1/3。其中,湿润区具有显著变干的趋势,土地利用变化的贡献约为35.4%;半干旱区显著变干,土地利用对半干旱地区变干的贡献不显著;两种情景下干旱区干湿变化都不显著。在土地利用情景下,中国地区土地利用的变化主要表现为一级土地的减少和牧草用地的增加,二者分别从国土面积的72.7%和12.9%(1901年)变为36.0%和41.9%(2004年),且1950年代之后变化速率显著增大。其中大面积显著的变化主要发生在青藏高原、内蒙古以及新疆北部地区,导致这些地区降水减少、温度降低,而降水减少带来的干旱化作用大于温度降低带来的变湿作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号