首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Inter-annual snow reliability is a key short-term concern for Arizona’s high elevation, low latitude ski resorts. Variability is linked to the El Niño Southern Oscillation (ENSO)–warm phase conditions typically portend a good ski season and vice versa. To operate more consistently in the medium-term Arizona’s two largest ski resorts plan to expand snowmaking. Snowmaking is a water and temperature constrained adaptation. One of the two resorts has overcome its water constraint by contracting with a municipality for treated wastewater. To assess the temperature constraint downscaled global coupled climate model temperature projections were compared to technical thresholds for the manufacture of snow at three time steps. In 2030, a period coincident with the lifetime of the investments, snowmaking will likely remain feasible. However, by 2050, temperatures will likely exceed technical thresholds in the shoulder seasons meaning that in years when natural snowfalls are poor the ski season may be curtailed. By 2080, without snowmaking efficiency improvements, warmer temperatures will make snowmaking increasingly more expensive and resort managers may need to plan for a future where operations and snowmaking are shifted to higher elevation, shaded, more snow reliable runs.  相似文献   

2.
Seasonal snow in New Zealand is likely to be subject to substantial change due to the impacts of climate change. These changes will have wide ranging impacts on the New Zealand's economy through the energy, agricultural and tourism sectors. In this paper, we assess the impact of climate change, at a micro-scale for a selection of ski area locations in New Zealand. Where available, we have used current observations of snow depth to calibrate the snow model output for the current climate. We consider the change in the number of days with snow depths exceeding 0.30?m, ??snow-days??, at each of these locations for the 2030?C2049 (mid-point reference 2040) and 2080?C2099 (mid-point reference 2090) time periods, for the three different emission scenarios (B1, A1B and A1FI). These future scenarios are compared to simulations of current, 1980?C1999 (mid-point reference 1990), number of snow-days at these locations. We consider both an average year in each 20-year period, as well as a ??worst-case?? year. At each ski area, we consider an upper and lower elevation site. Depending on the elevation and location of the specific site, our analysis shows that there will be a reduction in the number of snow-days in nearly all of the future scenarios and time periods. When we consider a worst-case or minimum snow year in the 1990s, the number of snow-days at each site ranges from 0 to 229, while by the 2040s, it ranges from 0 to 187 (B1), 0 to 183 (A1B) and 0 to 176 (A1FI). By the 2090s the number of snow-days ranges from 0 to 155 (B1), 0 to 90 (A1B) and 0 to 74 (A1FI). We also simulate the hourly future climate for the 2040s and 2090s, for the A1FI scenario, to enable calculations of the potential available time for snowmaking in these two future time periods. We use simulated temperatures and humidity to calculate the total potential snowmaking hours in the future climates. For the snowmaking analysis, only a worst-case year in each time period, rather than an average year, was used to assess the snowmaking potential. This was done to ensure consistency with snowmaking design practices. At all sites, for the A1FI emissions scenario and for both future time periods, a reduction in potential snowmaking hours is observed. By the 2040s, there is only 82 to 53?%, and by the 2090s, there is only 59 to 17?% of the snowmaking time as compared to the 1990s in a worst-case year. Despite this reduction in snowmaking opportunity, snowmaking was still possible at all sites examined. Furthermore, the amount of snow which could be made was sufficient to reinstate the number of snow-days to the lesser of either that observed in the 1990s for each site or to exceed 100?days. While our snowmaking analysis has some limitations, such as neglecting calculation of melt in the man-made snow component, this study highlights the importance of considering adaptation options such as snowmaking for a more complete impact assessment.  相似文献   

3.
In this paper we assess the impact of climate change, at a micro-scale for a selection of four sites in New Zealand and Australia. These sites are representative of the key destination ski regions. In contrast to previous work, our work will for the first time, allow for a direct comparison between these two countries and enable both an estimate of the absolute impacts at a given site, as well as the relative impacts between the two countries. This direct comparison is possible because we have used exactly the same snow model, the same 3 global climate models (GCMs) and the same techniques to calibrate the model for all locations. We consider the changes in natural snow at these locations for the 2030–2049 and 2080–2099 time periods, for one mid-range emissions scenario (A1B). This future scenario is compared to simulations of current, 1980–1999, snow at these locations. We did not consider the snowmaking or economic components of the ski industry vulnerability, only the modelled changes in the natural snow component. At our New Zealand sites, our model indicates that by the 2040s there will be on average between 90 % and 102 % of the current maximum snow depth (on 31 August) and by the 2090s this will be on average reduced to between 46 % and 74 %. In Australia, our models estimates that by the 2040s there will be on average between 57 % and 78 % of the current maximum snow depth and by the 2090s this will be on average further reduced to between 21 % and 29 %. In terms of days with snowdepths equal to or exceeding a ski industry useable levels of 0.30 m, at our lowest elevation, and most sensitive sites, we observe a change from 125 days (current) to 99–126 (2040s) and 52–110 (2090s) in New Zealand. In Australia, a reduction from 94 to 155 days (current) to 81–114 (2040s) and 0–75 (2090s) is observed. In each case the changes are highly depended on the GCM used to drive the climate change scenario. While the absolute changes will have direct impacts at each location, so too will the relative changes with respect to future potential Australia–New Zealand tourism flows, and beyond. Our study provides an approach by which other regions or countries with climate sensitive tourism enterprises could assess the relative impacts and therefore the potential wider ranging ramifications with respect to destination attractiveness.  相似文献   

4.
While corporate adaptation strategies in response to climate change have been characterized, the determinants of adaptation have not been comprehensively analyzed. Knowledge of these determinants is particularly useful for policy makers to provide favorable conditions in support of corporate adaptation measures. Based on unique data from a survey of Swiss ski lift operators, this paper empirically examines such determinants at the business level. Our econometric analysis with linear regression and count data models finds a positive influence of the awareness of possible climate change effects on the scope of corporate adaptation. Surprisingly, no significant influence of the vulnerability to climate change effects on the scope of adaptation could be found. Finally, the dependency on the affected business and the ability to adapt influence the specific strategic directions of corporate adaptation.  相似文献   

5.
Tourism in island states is vulnerable to climate change because it may result in detrimental changes in relation to extreme events, sea level rise, transport and communication interruption. This study analyses adaptation to climate change by tourist resorts in Fiji, as well as their potential to reduce climate change through reductions in carbon dioxide emissions. Interviews, site visitations, and an accommodation survey were undertaken. Many operators already prepare for climate-related events and therefore adapt to potential impacts resulting from climate change. Reducing emissions is not important to operators; however, decreasing energy costs for economic reasons is practised. Recommendations for further initiatives are made and synergies between the adaptation and mitigation approaches are explored.  相似文献   

6.
Study on the Impacts of Climate Change on China's Agriculture   总被引:1,自引:0,他引:1  
This paper measures the economic impacts of climate change on China's agriculture based on the Ricardian model. By using county-level cross-sectional data on agricultural net revenue, climate, and other economic and geographical data for 1275 agriculture dominated counties, we find that under most climate change scenarios both higher temperature and more precipitation would have an overall positive impact on China's agriculture. However, the impacts vary seasonally and regionally. Autumn effect is the most positive, but spring effect is the most negative. Applying the model to five climate scenarios in the year 2050 shows that the East, the Central part, the South, the northern part of the Northeast, and the Plateau would benefit from climate change, but the Southwest, the Northwest and the southern part of the Northeast may be negatively affected. In the North, most scenarios show that they may benefit from climate change. In summary, all of China would benefit from climate change in most scenarios.  相似文献   

7.
利用北京和张家口地区气象站建站至2016年历年11月至次年3月气象资料,研究2022年北京冬奥会人工造雪地面气象条件,结果表明:降水相态与地面气温(T)和相对湿度线性组合关系密切,通过计算不同温度对应降水相态频率,发现北京T≤-0.2℃,张家口市T≤-0.8℃时,降水相态为雪的频率≥95%;估算了冬奥会和残奥会举办地区域自动气象站2014—2016年赛事期间可造雪时数,发现冬奥期间造雪时数较为充足,残奥期间造雪时数较少,可以采用造雪和储雪结合保证赛事用雪。  相似文献   

8.
The PESETA project has estimated the physical effects of climate change in Europe for the following impact categories with a market valuation: agriculture, river floods, coastal systems and tourism. Four alternative scenarios of future climate change have been considered. The computable general equilibrium (CGE) GEM-E3 model for Europe has been used to integrate the PESETA damages under a consistent economic framework. The approach followed has been to assess the effects of future climate (as of 2080s) on today’s economy. This article details the way each sectoral impact has been integrated into the CGE model. The EU welfare loss is estimated to be in a range of 0.2% to 1%, depending on the climate future and the projected sea level rise. Results show that the Southern Europe region appears as the most vulnerable area to climate change. Impacts in coastal systems, agriculture and river floods determine the overall and regional pattern of impacts within Europe.  相似文献   

9.
2022年4月4日,IPCC第六次评估报告第三工作组《气候变化2022:减缓气候变化》报告和决策者摘要发布。报告全面评估了2010年以来减缓气候变化领域的最新科学进展,为国际社会深度认识和理解全球温室气体排放情况、不同温升水平下的减排路径以及可持续发展背景下的气候变化减缓和适应行动等提供了重要科学依据。基于报告主要结论,围绕温室气体排放的区域差异、减缓路径分类、与土地利用相关的排放评估及CO去除技术评估等方面的亮点,文中提出在应对气候变化减缓政策行动中,中国应坚定“双碳”战略目标,在综合考虑经济发展阶段和资源禀赋差异背景下,将可持续发展、公平和消除贫困植根于社会发展愿景中实施减缓路径,并加快提升气候变化综合评估核心科学技术的研发进度,以进一步提升国际影响力和话语权。  相似文献   

10.
The case of the Pyramid Lake Paiute Tribe exemplifies tribal vulnerabilities as a result of climate change. Preliminary socio-economic data and analysis reveal that the tribe’s vulnerability to climate change is related to cultural and economic dependence on Pyramid Lake, while external socio-economic vulnerability factors influence adaptive capacity and amplify potential impacts. Reduced water supplies as a consequence of climate change would result in a compounded reduction of inflows to Pyramid Lake, thus potentially impacting the spawning and sustenance of a cultural livelihood, the endangered cui-ui fish (Chasmistes cujus). Meanwhile, limited economic opportunities and dwindling federal support constrain tribal adaptive capacity. Factors that contribute to tribal adaptive capacity include: sustainability-based values, technical capacity for natural resource management, proactive initiatives for the control of invasive-species, strong external scientific networks, and remarkable tribal awareness of climate change.  相似文献   

11.
Abstract

The Mali agricultural sector and the country's food security are potentially vulnerable to climate change. Policies may be able to mitigate some of the climate change vulnerability. This article investigates several policy changes that may reduce vulnerability, including climate-specific and other policies. The policy set includes migration of cropping patterns, development of high-temperature-resistant cultivars, reduction in soil productivity loss, cropland expansion, adoption of improved cultivars, and changes in trade patterns. When all policies are considered together, results under climate change show an annual gain of $252 million in economic benefits as opposed to a $161 million loss without policy adjustment. Simultaneously, undernourishment is reduced to 17% of the Malian population as compared with 64% without policy adjustment. We also find tradeoffs in cases between economic benefits and undernourishment. Policies are also studied individually and collectively. Overall, the results indicate that policy can play an important role in reducing climate change vulnerability in Mali.  相似文献   

12.
Beginning in the mid-1990s, re-eutrophication has reemerged as severe problems in Lake Erie. Controlling non-point source (NPS) nutrient pollution from cropland, especially dissolved reactive phosphorus (DRP), is the key to restore water quality in Lake Erie. To address NPS pollution, previous studies have analyzed the effectiveness of alternative spatially optimal land use and management strategies (represented as agricultural conservation practices (CPs)). However, few studies considered both strategies and have analyzed and compared their sensitivity to expected changes in temperature and precipitation due to climate change and increased greenhouse gas concentrations. In this study, we evaluated impacts of climatic change on the economic efficiency of these strategies for DRP abatement, using an integrated modeling approach that includes a watershed model, an economic valuation component, and a spatial optimization model. A series of climate projections representing relatively high greenhouse gas emission scenarios was developed for the western Lake Erie basin to drive the watershed model. We found that performance of solutions optimized for current climate was degraded significantly under projected future climate conditions. In terms of robustness of individual strategies, CPs alone were more robust to climate change than land use change alone or together with CPs, but relying on CPs alone fails to achieve a high (>?71%) DRP reduction target. A combination of CPs and land use changes was required to achieve policy goals for DRP reductions (targeted at ~?78%). Our results point to the need for future spatial optimization studies and planning to consider adaptive capacity of conservation actions under a changing climate.  相似文献   

13.
鉴于气候变化影响粮食安全问题的特殊性和复杂性,本文试图从自然科学和社会科学的交叉研究入手,提出一种新的研究的思路和方法,即:运用计量经济学模型对气候变化数据进行统计分析,使用计量经济学方法来评估气候这一外部驱动因素引发的社会经济系统变化与观测到的气候变化引发的社会经济系统变化之间的关系;在厘清“气候变化影响量”对粮食产量的影响的基础上,预估我国未来30年特别是经济社会发展两个关键节点2035年和2050年的粮食生产的气候变化风险,文章给出了一种新的研究视角,构建了研究内容和研究方法,力争实现定性研究与定量研究相结合,以科学预测为政策指导提供有力支撑。  相似文献   

14.
Climate change is a fundamental challenge for which agriculture is sensitive and vulnerable. The Intergovernmental Panel on Climate Change has identified relevant information as key to enabling appropriate climate adaptation and mitigation action. Information specifically directed to farmers can be found, for example, in specialized farming magazines. While recent studies examine how national news media frame climate change, less—if any—studies have addressed climate framings and coverage in specialized media. Media framings are storylines that provide meaning by communicating how and why an issue should be seen as a problem, how it should be handled, and who is responsible for it. This paper analyses the framings and coverage of climate change in two Swedish specialized farming magazines from 2000 to 2009. It examines the extent of the climate change coverage, the content of the media items, and the dominant framings underlying their climate change coverage. The study identifies: increased coverage of climate change starting in 2007; frequent coverage of agriculture’s contribution to climate change, climate change impacts on agriculture, and consequences of climate politics for agriculture; and four prominent frames: conflict, scientific certainty, economic burden, and action. The paper concludes that climate change communicators addressing farmers and agricultural extension officers should pay attention to how these frames may be interpreted by different target audiences. Research is needed on how specialized media reports on climate-related issues and how science-based climate information is understood by different groups of farmers and which other factors influence farmers’ engagement in climate mitigation and adaptation.  相似文献   

15.
The main objective of this study is to simulate household choice behavior under varying climate change scenarios using choice experiments. Economic welfare measures are derived for society’s willingness to pay (WTP) to reduce climate change induced flood risks through private insurance and willingness to accept compensation (WTAC) for controlled flooding under varying future risk exposure levels. Material flood damage and loss of life are covered in the insurance policy experiment, while the WTAC experiment also captures the economic value of immaterial flood damage such as feelings of discomfort, fear and social disruption. The results show that WTP and WTAC are substantial, suggesting a more prominent role of external social damage costs in cost-benefit analysis of climate change and flood mitigation policies.  相似文献   

16.
Climate change presents clear risks to natural resources, which carry potential economic costs. The limited nature of physical, financial, human and natural resources means that governments, as managers of natural resources, must make careful decisions regarding trade-offs and the potential future value of investments in climate change adaptation. This paper presents cost-benefit analysis of scenarios to characterise economic benefits of adaptation from the perspective of a public institution (the provincial government) and private agents (forest licensees). The example provided is the context of assisted migration strategies for regenerating forests that are currently being implemented in British Columbia to reduce future impacts of climate change on forests. The analysis revealed positive net present value of public investment in assisted migration across all scenarios under a range of conditions; however, private sector agents face disincentives to adopt these strategies. Uncertainty about how the costs, benefits and risks associated with climate change impacts will be distributed among public institutions and private actors influences incentives to adapt to climate change (the “principal-agent problem”) and further complicates adaptation. Absent development of risk-sharing mechanisms or re-alignment of incentives, uptake of assisted migration strategies by private agents is likely to be limited, creating longer-term risks for public institutions. Analyzing incentives and disincentives facing principals and agents using a well-known tool (cost-benefit analysis) can help decision-makers to identify and address underlying barriers to climate change adaptation in the context of public lands management.  相似文献   

17.
This paper considers how farmers perceive and respond to climate change policy risks, and suggests that understanding these risk responses is as important as understanding responses to biophysical climate change impacts. Based on a survey of 162 farmers in California, we test three hypotheses regarding climate policy risk: (1) that perceived climate change risks will have a direct impact on farmer's responses to climate policy risks, (2) that previous climate change experiences will influence farmer's climate change perceptions and climate policy risk responses, and (3) that past experiences with environmental policies will more strongly affect a farmer's climate change beliefs, risks, and climate policy risk responses. Using a structural equation model we find support for all three hypotheses and furthermore show that farmers’ negative past policy experiences do not make them less likely to respond to climate policy risks through participation in a government incentive program. We discuss how future research and climate policies can be structured to garner greater agricultural participation. This work highlights that understanding climate policy risk responses and other social, economic and policy perspectives is a vital component of understanding climate change beliefs, risks and behaviors and should be more thoroughly considered in future work.  相似文献   

18.
In spite of the uncertainties of potential climate change, a scientific consensus is emerging that increasing concentrations of atmospheric CO2 could alter global temperatures and precipitation patterns. Changes in global climate as predicted by General Circulation Models (GCM) could therefore, have profound implications for global agriculture. The objective of this study was to assess the impacts of potential climate change on livestock and grassland production in the major producing regions of the United States. Simulation sites were selected for the study on the basis of the region's economic dependence on rangeland livestock production. Five thirty-year simulations were conducted on each site using the Simulation of Production and Utilization of Rangelands model and Colorado Beef Cattle Production Model. Climate change files were obtained by combining historic weather data from each site with predicted output from three GCM's. Results from nominal runs were compared with the three climate change scenarios and a doubled CO2 run. The magnitude and direction of ecosystem response to climate change varied among the GCM's and by geographic region. Simulations demonstrated that changes in temperature and precipitation patterns caused an increase in above-ground net primary production for most sites. Increased decomposition rates were recorded for northern regions. Similarly, animal production in northern regions increased, implying an increase in economic survivability. However, because decreases in animal production indicators were recorded for the southern regions, economic survivability in southern regions is less certain.  相似文献   

19.
气候变化对区域经济影响的投入-产出模型研究   总被引:4,自引:0,他引:4  
张永勤  缪启龙 《气象学报》2001,59(5):633-640
利用经济学“投入-产出”分析方法的基本原理,结合气候变化对工业影响的统计模型、对 农业产量影响的计算机模拟系统,建立了气候变化对区域经济影响的投入-产出模型。研究 了当气候变化对工业、农业部门的生产和产品发生影响时,导致的对国民经济其他部门的拉 动需求量和各个部门间的投入-产出流量的变化,从而预测各个部门的国内生产总值和总产 出量,对2010,2020年的经济发展。综合分析 气候变化对各部门的影响,找出适应区域经济平衡发展的适应对策,为决策者 提供一些参考建议。  相似文献   

20.
The combined influences of a change in climate patterns and the increased concentration of property and economic activity in hazard-prone areas has the potential of restricting the availability and affordability of insurance. This paper evaluates the premiums that private insurers are likely to charge and their ability to cover residential losses against hurricane risk in Florida as a function of (a) recent projections on future hurricane activity in 2020 and 2040; (b) insurance market conditions (i.e., soft or hard market); (c) the availability of reinsurance; and (d) the adoption of adaptation measures (i.e., implementation of physical risk reduction measures to reduce wind damage to the structure and buildings). We find that uncertainties in climate projections translate into a divergent picture for insurance in Florida. Under dynamic climate models, the total price of insurance for Florida (assuming constant exposure) could increase significantly by 2040, from $12.9 billion (in 1990) to $14.2 billion, under hard market conditions. Under lower bound projections, premiums could decline to $9.4 billion by 2040. Taking a broader range of climate change scenarios, including several statistical ones, prices could be between $4.7 and $32.1 billion by 2040. The upper end of this range suggests that insurance could be unaffordable for many people in Florida. The adoption of most recent building codes for all residences in the state could reduce by nearly half the expected price of insurance so that even under high climate change scenarios, insurance premiums would be lower than under the 1990 baseline climate scenario. Under a full adaptation scenario, if insurers can obtain reinsurance, they will be able to cover 100 % of the loss if they allocated 10 % of their surplus to cover a 100-year return hurricane, and 63 % and 55 % of losses from a 250-year hurricane in 2020 and 2040. Property-level adaptation and the maintenance of strong and competitive reinsurance markets will thus be essential to maintain the affordability and availability of insurance in the new era of catastrophe risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号