首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Biachellaite, a new mineral species of the cancrinite group, has been found in a volcanic ejecta in the Biachella Valley, Sacrofano Caldera, Latium region, Italy, as colorless isometric hexagonal bipyramidal-pinacoidal crystals up to 1 cm in size overgrowing the walls of cavities in a rock sample composed of sanidine, diopside, andradite, leucite and hauyne. The mineral is brittle, with perfect cleavage parallel to {10$ \bar 1 $ \bar 1 0} and imperfect cleavage or parting (?) parallel to {0001}. The Mohs hardness is 5. Dmeas = 2.51(1) g/cm3 (by equilibration with heavy liquids). The densities calculated from single-crystal X-ray data and from X-ray powder data are 2.515 g/cm3 and 2.520 g/cm3, respectively. The IR spectrum demonstrates the presence of SO42−, H2O, and absence of CO32−. Biachellaite is uniaxial, positive, ω = 1.512(1), ɛ = 1.514(1). The weight loss on ignition (vacuum, 800°C, 1 h) is 1.6(1)%. The chemical composition determined by electron microprobe is as follows, wt %: 10.06 Na2O, 5.85 K2O, 12.13 CaO, 26.17 Al2O3, 31.46 SiO2, 12.71 SO3, 0.45 Cl, 1.6 H2O (by TG data), −0.10 −O=Cl2, total is 100.33. The empirical formula (Z = 15) is (Na3.76Ca2.50K1.44)Σ7.70(Si6.06Al5.94O24)(SO4)1.84Cl0.15(OH)0.43 · 0.81H2O. The simplified formula is as follows: (Na,Ca,K)8(Si6Al6O24)(SO4)2(OH)0.5 · H2O. Biachellaite is trigonal, space group P3, a =12.913(1), c = 79.605(5) ?; V = 11495(1) ?3. The crystal structure of biachellaite is characterized by the 30-layer stacking sequence (ABCABCACACBACBACBCACBACBACBABC). The tetrahedral framework contains three types of channels composed of cages of four varieties: cancrinite, sodalite, bystrite (losod) and liottite. The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) (hkl)] are as follows: 11.07 (19) (100, 101), 6.45 (18) (110, 111), 3.720 (100) (2.1.10, 300, 301, 2.0.16, 302), 3.576 (18) (1.0.21, 2.0.17, 306), 3.300 (47) (1.0.23, 2.1.15), 3.220 (16) (2.1.16, 222). The type material of biachellaite has been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 3642/1.  相似文献   

2.
Alloriite, a new mineral species, has been found in volcanic ejecta at Mt. Cavalluccio (Campagnano municipality, Roma province, Latium region, Italy) together with sanidine, biotite, andradite, and apatite. The mineral is named in honor of Roberto Allori (b. 1933), an amateur mineralogist and prominent mineral collector who carried out extensive and detailed field mineralogical investigations of volcanoes in the Latium region. Alloriite occurs as short prismatic and tabular crystals up to 1.5 × 2 mm in size. The mineral is colorless, transparent, with a white streak and vitreous luster. Alloriite is not fluorescent and brittle; the Mohs’ hardness is 5. The cleavage is imperfect parallel to {10 0}. The density measured with equilibration in heavy liquids is 2.35g/cm3 and calculated density (D calc) is 2.358 g/cm3 (on the basis of X-ray single-crystal data) and 2.333 g/cm3 (from X-ray powder data). Alloriite is optically uniaxial, positive, ω = 1.497(2), and ɛ = 1.499(2). The infrared spectrum is given. The chemical composition (electron microprobe, H2O determined using the Penfield method, CO2, with selective sorption, wt %) is: 13.55 Na2O, 6.67 K2O, 6.23 CaO, 26.45 Al2O3, 34.64 SiO2, 8.92 SO3, 0.37 Cl, 2.1 H2O, 0.7 CO2, 0.08-O = Cl2, where the total is 99.55. The empirical formula (Z = 1) is Na19.16K6.21Ca4.87(Si25.26Al22.74O96)(SO4)4.88(CO3)0.70Cl0.46(OH)0.76 · 4.73H2O. The simplified formula (taking into account the structural data, Z = 4) is: [Na(H2O)][Na4K1.5(SO4)] · [Ca(OH,Cl)0.5](Si6Al6O24). The crystal structure has been studied (R = 0.052). Alloriite is trigonal, the space group is P31c; the unit-cell dimensions are a = 12.892(3), c = 21.340(5) ?, and V = 3071.6(15) ?3. The crystal structure of alloriite is based on the same tetrahedral framework as that of afghanite. In contrast to afghanite containing clusters [Ca-Cl]+ and chains ...Ca-Cl-Ca-Cl..., the new mineral contains clusters [Na-H2O]+ and chains ...Na-H2O-Na-H2O.... The strongest reflections in the X-ray powder diffraction pattern [d, ? (I, %)(hkl)] are: 11.3(70)(100), 4.85(90)(104), 3.76(80)(300), 3.68(70)(301), 3.33(100)(214), and 2.694(70)(314, 008). The type material of alloriite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. The registration number is 3459/1. Original Russian Text ? N.V. Chukanov, R.K. Rastsvetaeva, I.V. Pekov, A.E. Zadov, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, No. 1, pp. 82–89. A new mineral alloriite and its name were accepted by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, May 8, 2006. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, August 2, 2006.  相似文献   

3.
This paper presents data on burovaite-Ca, the first Ti-dominant member of the labuntsovite group with a calcium D-octahedron. The idealized formula of burovaite-Ca is (K,Na)4Ca2(Ti,Nb)8[Si4O12]4(OH,O)8 · 12H2O. The mineral has been found in the hydrothermal zone of aegirine-microcline pegmatite located in khibinite at Mt. Khibinpakhkchorr, the Khibiny pluton, Kola Peninsula, Russia. Radiaxial intergrowths of burovaite-Ca and labuntsovite-Mn associated with lemmleynite-Ba, analcime, and apophyllite have been identified in caverns within microcline. The mean composition of the mineral is as follows, wt %: 3.72 Na2O, 2.76 K2O, 4.22 CaO, 0.47 SrO, 0.23 BaO, 0.01 MnO, 0.30 Fe2O3, 0.14 Al2O3, 42.02 SiO2, 17.30 TiO2, 15.21 Nb2O5, 12.60 H2O (measured); the total is 98.98. Its empirical formula has been calculated on the basis of [(Si,Al)16O48]: {(Na3.10K1.07Ca0.37Sr0.04Ba0.04)4.62}(Ca1.28Zn0.01)1.29(Ti4.97Nb2.56Fe0.08Ta0.02)7.63(Si15.93Al0.07)16O48(OH6.70O0.93)7.63 · 12H2O. The strongest lines in the X-ray powder diffraction pattern of burovaite-Ca (I-d ?] are as follows: 70–7.08, 40–6.39, 40–4.97, 30–3.92, 40–3.57, 100–3.25, 70–3.11, 50–2.61, 70–2.49, 40–2.15, 50–2.05, 70–1.712, 70–1.577, and 70–1.444. The structure of burovaite-Ca was solved by A.A. Zolotarev, Jr. The mineral is monoclinic, space group C2/m. The unit-cell dimensions are a = 14.529(3), b = 14.203(3), c = 7.899(1), β = 117.37(1)°, V = 1447.57 ?3. Burovaite-Ca is an isostructural Ti-dominant analogue of karupm?llerite-Ca and gjerdingenite-Ca. Two stages of mineral formation—pegmatite proper and hydrothermal—have been recognized in the host pegmatite. The hydrothermal stage included K-Ba-Na, Na-K-Ca, and Na-Sr substages. Burovaite-Ca is related to the intermediate Na-K-Ca substage. At the first substage, labuntsovite-Mn and lemmleynite-Ba were formed, and tsepinite-Na, paratsepinite-Nd, and tsepinite-Sr were formed at the final substage. Thus, the sequence of crystallization of labuntsovite-group minerals is characterized by the replacement of the potassium regime by the sodium regime of alkaline solutions in the evolved host pegmatite.  相似文献   

4.
1974年在一水晶矿石英脉晶洞中,发现了一种含Ba、Li的硅酸盐新矿物--纤钡锂石。我们对纤钡锂石进行了光性研究、比重测定、差热及热失重分析、红外光谱分析、X射线单晶结构分析等工作,现分述如下。  相似文献   

5.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   

6.
7.
通过密度泛函理论模拟了H_2O_2和SO_2气体在矿物氧化物(α-Fe_2O_3)表面上的非均相反应,研究了H_2O_2和SO_2在α-Fe_2O_3(001)表面的吸附机制和氧化机制。研究结果表明,SO_2、H_2O_2均在α-Fe_2O_3(001)表面通过Fe原子进行吸附,H_2O_2相比于SO_2优先吸附在α-Fe_2O_3(001)表面,且H_2O_2在表面的赋存形式趋向于两个·OH形式吸附。通过二者共吸附的局域态密度、差分电荷密度、Mulliken电荷布局分析结果发现,SO_2和H_2O_2的共吸附形式是通过H_2O_2产生的·OH吸附在α-Fe_2O_3(001)表面,同时SO_2被H_2O_2产生的·OH氧化[S(SO_2)-电荷布局:0. 79 e→1. 32 e; O(H_2O_2)-电荷布局:-0. 77 e→-1. 11 e]形成·OH+SO_2团簇。模拟结果表明大气微量气体H_2O_2能够在矿物氧化物表面介导SO_2吸附并促进SO_2的转化,为理解H_2O_2在大气中非均相氧化SO_2的反应过程提供了理论依据。  相似文献   

8.
A new mineral eurekadumpite found at the Centennial Eureka Mine in the Tintic district of Juab County in Utah in the United States occurs in the oxidation zone along with quartz, macalpineite, malachite, Zn-bearing olivenite, goethite, and Mn oxides. Eurekadumpite forms spherulites or rosettes up to 1 mm in size and their clusters and crusts up to 1.5 cm2 in cavities. Its individuals are divergent and extremely thin (up to 0.5 mm across and less than 1 μm thick) hexagonal or roundish leaflets. The mineral is deep blue-green or turquoise-colored. Its streaks are light turquoise-colored. Its luster is satiny in aggregates and pearly on individual flakes. Its cleavage is (010) perfect and micalike. Its flakes are flexible but inelastic. Its Mohs hardness is 2.5–3.0, and D(meas) = 3.76(2) and D(calc) = 3.826 g/cm3. The mineral is optically biaxial negative, and α = 1.69(1), β ∼ γ = 1.775(5), and 2V meas = 10(5)°. Its pleochroism is strong: Y = Z = deep blue-green, and X = light turquoise-colored. Its orientation is X = b. The wavenumbers of the bands in the IR spectrum (cm−1; the strong lines are underlined, and w denotes the weak bands) are 3400, 2990, 1980w, 1628, 1373w, 1077, 1010, 860, 825, 803, 721w, 668, 622, 528, 461. The IR spectrum shows the occurrence of the tellurite (Te4+,O3)2− and arsenate (As5+,O4)3− anionic groups and H2O molecules; Cu and Zn cations are combined with OH groups. The chemical composition of eurekadumpite is as follows (wt %, average of 14 electron-microprobe analyses; H2O determined using the Alimarin method): 0.04 FeO, 36.07 CuO, 20.92 ZnO, 14.02 TeO2, 14.97 As2O5, 1.45 Cl, 13.1 H2O, O = Cl2 −0.33, total 100.24. The empirical formula based on 2 Te atoms is (Cu10.32Zn5.85Fe0.01)Σ16.18(TeO3)2(AsO4)2.97[Cl0.93(OH)0.07]Σ1(OH)18.45 · 7.29H2O. The idealized formula is (Cu,Zn)16(TeO3)2(AsO4)3Cl(OH)18 · 7H2O. Eurekadumpite is monoclinic (pseudohexagonal), and the most probable space groups are P2/m, P2, or Pm. The unit-cell parameters refined from the powder X-ray data are as follows: a = 8.28(3), b = 18.97(2), c = 7.38(2) ?, β = 121.3(6)°, V = 990(6) ?3, and Z = 1. The strongest reflections of the X-ray powder pattern (d, ? (I) [hkl]) are as follows: 18.92(100) [010], 9.45(19) [020], 4.111(13) [[`2]\bar 2 01], 3.777(24) [050, [`2]\bar 2 21, 041], 2.692(15) [[`3]\bar 3 11, 151, [`3]\bar 3 02], 2.524(41)[170, [`2]\bar 2 52, [`1]\bar 1 71], 1.558(22) [[`4]\bar 4 82, [`3]\bar 3 .10.1, 024]. The name of the mineral means, firstly, that it was found in specimens from dumps of the Centennial Eureka Mine. In addition, it could mean found in a dump (the Greek word eureka means I have found it). There is an allusion to the great role that dumps of abandoned mines have played in the discovery of new minerals. Type specimens are deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow, at the Smithsonian National Museum of Natural History in Washington, and at the American Museum of Natural History in New York.  相似文献   

9.
The 10?-phase, Mg3Si4O10(OH)2 · nH2O, where n = 0.65÷2, belongs to the group of dense hydrous magnesium silicates (DHMS), which were produced in experiments and are regarded as hypothetical mineral carriers for H2O in the mantle. However, DHMS were almost never observed in nature. The only exception is the finding of the 10?-phase as nanoinclusions in olivines from mantle nodules in kimberlites. The inclusions with sizes of a few ten nanometers have a pseudohexagonal habit and are characterized by the presence of voids free of solids. The 10?-phase fills the equatorial parts of the inclusions, and, in the majority of inclusions, it is replaced by the low-pressure serpentine + talc assemblage. Based on the analysis of electron microscope images, a model was proposed for the solid-state formation of inclusions, the precursory material of which was transformed to the 10?-phase with the liberation of a water fluid. According to this model, the formation of hydrous nanoinclusions and their subsequent autoserpentinization occurred without the influx of H2O from the external medium through the mobilization of intrinsic hydroxyl-bearing point defects trapped during olivine crystallization. The subsequent autoserpentinization of the inclusions occurred during decompression owing to interaction between the inclusion material and the host olivine matrix. The process was accompanied by the partial exhaustion of the fluid phase and the replacement 10?-phase + H2O = Serp + Tc. The criterion for the credibility of the model is the conservation of the volume of material during the reaction at P = const and T = const. Original Russian Text ? N.R. Khisina, R. Wirth, 2008, published in Geokhimiya, 2008, No. 4, pp. 355–363.  相似文献   

10.
11.
纤钡锂石产于湖南临武香花岭地区一水晶矿锂云母石英脉晶洞中,与锂云母、石英等矿物共生。矿物为浅黄白色,丝绢光泽,呈针状、纤维状、放射状或平行束状集合体,纤维长达1厘米。经X射线单晶及粉晶衍射测定:该矿物属斜方晶系,空间群Ccca,晶胞参数:a=13.60(?),b=20.24(?),e=5.16(?)。最强衍射线为:10.12(?)(100) 4.05(?)(78) 3.39(?)(91) 2.605(?)(31)2.390(?)(28)。  相似文献   

12.
The high temperature volume and axial parameters for six C2/c clinopyroxenes along the NaAlSi2O6–NaFe3+Si2O6 and NaAlSi2O6–CaFe2+Si2O6 joins were determined from room T up to 800°C, using integrated diffraction profiles from in situ high temperature single crystal data collections. The thermal expansion coefficient was determined by fitting the experimental data according to the relation: ln(V/V 0) = α(T T 0). The thermal expansion coefficient increases by about 15% along the jadeite–hedenbergite join, whereas it is almost constant between jadeite and aegirine. The increase is related to the Ca for Na substitution into the M2 site; the same behaviour was observed along the jadeite–diopside solid solution, which presents the same substitution at the M2 site. Strain tensor analysis shows that the major deformation with temperature occurs in all samples along the b axis; on the (010) plane the higher deformation occurs in jadeite and aegirine at a direction almost normal to the tetrahedral–octahedral planes, and in hedenbergite along the projection of the longer M2–O bonds. The orientation of the strain ellipsoid with temperature in hedenbergite is close to that observed with pressure in pyroxenes. Along the jadeite–aegirine join instead the high-temperature and high-pressure strain are differently oriented.  相似文献   

13.
A new heterophyllosilicate mineral schüllerite was found in the L?hley basalt quarry in the Eifel volcanic region, Germany, as a member of the late mineral assemblage comprising nepheline, leucite, augite, phlogopite, magnetite, titanite, fresnoite, barytolamprophyllite, fluorapatite, perovskite, and pyrochlore. Flattened brown crystals of schüllerite up to 0.5 × 1 × 2 mm in size and their aggregates occur in miarolic cavities of alkali basalt. The mineral is brittle, with a Mohs hardness 3–4 and perfect cleavage parallel to (001). D calc = 3.974 g/cm3. Its IR spectrum is individual and does not contain bands of OH, CO32− or H2O. Schüllerite is biaxial (−), α = 1.756(3), β = 1.773(4), γ = 1.780(4), 2V meas = 40(20)°. Dispersion is weak, r < ν. Pleochroism is medium X > Y > Z, brown to dark brown. Chemical composition (electron microprobe, mean of five-point analyses, Fe2+/Fe3+ ratio determined by the X-ray emission spectroscopic data, wt %): 3.55 Na2O, 0.55 K2O, 3.89 MgO, 2.62 CaO, 1.99 ArO, 28.09 BaO, 3.43 FeO, 8.89 Fe2O3, 1.33 Al2O3, 11.17 TiO2, 2.45 Nb2O5, 26.12 SiO2, 2.12 F, −0.89 -O=F2, 98.98 in total. The empirical formula is (Ba1.68Sr0.18K0.11Na1.05Ca0.43Mn0.47Mg0.88Fe0.442+Fe1.023+Ti1.28Nb0.17Al0.24)Σ7.95Si3.98O16.98F1.02. The crystal structure was refined on a single crystal. Schüllerite is triclinic, space group P1, unit cell parameters: a = 5.4027(1), b = 7.066(4), c = 10.2178(1)?, α = 99.816(1), β = 99.624(1), γ = 90.084(1)°, V = 378.75(2) ?3, Z = 1. The strongest lines of the X-ray powder diffraction pattern [d, ?, (I, %)]: 9.96(29), 3.308(45), 3.203(29), 2.867(29), 2.791(100), 2.664(46), 2.609(36), 2.144(52). The mineral was named in honor of Willi Schüller (born 1953), an enthusiastic, prominent amateur mineral collector, and a specialist in the mineralogy of Eifel. Type specimens have been deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, registration no. 3995/1,2.  相似文献   

14.
A new mineral fivegite has been identified in a high-potassium hyperalkaline pegmatite at Mt. Rasvumchorr in the Khibiny alkaline complex of the Kola Peninsula in Russia. This mineral is a product of the hydrothermal alteration of delhayelite (homoaxial pseudomorphs after its crystals up to 2 × 3 × 10 cm in size). Hydrodelhayelite, pectolite, and kalborsite are products of fivegite alteration. The associated minerals are aegirine, potassic feldspar, nepheline, sodalite, magnesiumastrophyllite, lamprophyllite, lomonosovite, shcherbakovite, natisite, lovozerite, tisinalite, ershovite, megacyclite, shlykovite, cryptophyllite, etc. Areas of pure unaltered fivegite are up to 2 mm in width. The mineral is transparent and colorless; its luster is vitreous to pearly. Its Cleavage is perfect (100) and distinct (010). Its Mohs hardness is 4, D(meas) = 2.42(2), and D(calc) = 2.449 g/cm3. Fivegite is optically biaxial positive: α 1.540(1), β 1.542(2), γ 1.544(2), and 2V(meas) 60(10)°. Its orientation is X = a, y = c, and Z = b. Its IR spectrum is given. Its chemical composition (wt %; electron microprobe, H2O determined by selective sorption) is as follows: 1.44 Na2O, 19.56 K2O, 14.01 CaO, 0.13 SrO, 0.03 MnO, 0.14 Fe2O3, 6.12 Al2O3, 50.68 SiO2, 0.15 SO3, 0.14 F, 3.52 Cl, 4.59 H2O; −O = −0.85(Cl,F)2; total 99.66. The empirical formula based on (Si + Al + Fe) = 8 is H4.22K3.44Na0.39Ca2.07Sr0.01Fe0.01Al1.00Si6.99O21.15F0.06Cl0.82(SO4)0.02. The simplified formula is K4Ca2[AlSi7O17(O2 − x OH x ][(H2O)2 − x OH x ]Cl (X = 0−2). Fivegite is orthorhombic: Pm21 n, a = 24.335(2), b = 7.0375(5), c = 6.5400(6) ?, V = 1120.0(2) ?3, and Z = 2. The strongest reflections of the X-ray powder pattern are as follows (d, ?, (I, %), [hkl]): 3.517(38) [020], 3.239(28) [102], 3.072(100) [121, 701], 3.040(46) [420, 800, 302], 2.943 (47) [112], 2.983(53) [121], 2.880 (24) [212, 402], 1.759(30) [040, 12.2.0]. The crystal structure was studied using a single crystal: R hkl = 0.0585. The base of fivegite structure is delhayelite-like two-layer terahedral blocks [(Al,Si)4Si12O34(O4 − x OH x )] linked by Ca octahedral chains. K+ and Cl are localized in zeolite-like channels within the terahedral blocks, whereas H2O and OH occur between the blocks. The mineral is named in memory of the Russian geological and mining engineer Mikhail Pavlovich Fiveg (1899–1986), the pioneering explorer of the Khibiny apatite deposits. The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow. The series of transformations is discussed: delhayelite K4Na2Ca2[AlSi7O19]F2Cl—fivegite K4Ca2[AlSi7O17(O2 − x OH x ]Cl—hydrodelhayelite KCa2[AlSi7O17(OH)2](H2O)6 − x .  相似文献   

15.
16.
The 1986 lethal eruption of Lake Nyos (Cameroon) was caused by a sudden inversion between deep, CO2-loaded bottom lake waters and denser, gas-free surface waters. A deep CO2 source has been found in fluid inclusions which occur predominantly in clinopyroxenes from lherzolitic mantle xenoliths, brought to the surface by the last erupted alkali basalts. P–T conditions of CO2 trapping correspond to a gas density equal (or higher) than that of liquid water. It is suggested that this dense CO2, found in many ultrabasic mantle xenoliths worldwide, has accumulated at km depth, below a column of descending lake water. It may remain in a stable state for a long period, as long as the temperature is above the density inversion temperature for pure H2O/CO2 systems. At an estimated depth of about 3 km, cooling by descending waters (to about 30 °C) induces a density inversion for the upper part of the CO2 reservoir. This causes a constant, regular upstream of low-density CO2 which, in its turn, feeds the shallower lake density inversion.  相似文献   

17.
桑世华  李明  李恒  孙明亮 《地质学报》2010,84(11):1704-1707
采用等温溶解平衡法研究了288K时Li+, Mg2+//SO2-4, B4O2-7- H2O四元体系的固液相平衡关系,测定了该四元体系在288K时平衡液相的溶解度和密度。依据实验测定的平衡溶解度数据及对应的平衡固相,绘制了该四元体系的平衡相图及密度组成图。研究结果表明:交互四元体系Li+, Mg2+//SO2-4, B4O2-7- H2O 288K时平衡相图中有2个共饱点,5条单变量曲线,4个结晶区对应的平衡固相分别为Li2B4O7·3H2O,Li2SO4·H2O,MgB4O7·9H2O和MgSO4·7H2O。  相似文献   

18.
采用等温溶解平衡法开展了三元体系K+,Mg2+∥B4O72--H2O 348K的稳定相平衡研究,获得溶解度数据及平衡液相的密度,折光率,pH值。根据溶解度数据绘制了三元体系稳定相图。该三元体系在348K时的稳定相图含有一个共饱点E、两条单变量曲线AE,BE和两个结晶相区MgB4O7.9H2O(AECA)和K2B4O7·4H2O(BEDB)。共饱点的平衡固相组成为MgB4O7·9H2O和K2B4O7·4H2O,对应的平衡液相组成为w(K2B4O7)=42.28%、w(MgB4O7)=8.11%。研究结果表明,该三元体系属于简单共饱和型,无复盐和固溶体形成。K2B4O7·4H2O和MgB4O7·9H2O互相存在盐溶作用,使得这两种盐的溶解度明显增大。平衡液相的密度、折光率均随溶液中K2B4O7质量分数的增大而增大。  相似文献   

19.
20.
Pyrope-knorringite garnets, Mg3(Al1-X Cr3+X)2Si3O12 with X=0.25, 0.50, and 1.00, were synthesized between 9 and 16 GPa and 1300 and 1600 °C, using multianvil high-pressure techniques. The garnets with X=0.25 and 0.50 are fine-grained, pink and violet in color. The end-member knorringites with X=1.00 are black when compact and gray when coarse-grained. The fine powder is greenish gray in natural light and pale pink under a tungsten lamp. Powder remission spectra in the wavenumber range 30 000–10 000 cm–1 on finely powdered crystals were measured by two different methods: (I.) by the use of a small integrating sphere for small samples or (II.) microscope-spectrometric measurement using diffusely reflected radiation from a 45° illuminated microsample. Both methods yielded similar diffuse reflectance spectra. The following crystal-field parameters of [6]Cr3+ were determined for garnets with X=0.25, 0.50, 1.00: 10 Dq=17 856, 17 596, 17 286 cm–1; and B=654, 677, 706 cm–1; nephelauxetic ratio =(Bfield/Bfree)= 0.71, 0.74, 0.77. The -values indicate decreasing covalency of the Cr–O bond with increasing Cr content. The 10 Dq value for together with the mean Cr–O distance in end-member knorringite, 1.96 Å (Novak and Gibbs 1971), were used to calculate from the spectral data, local mean Cr–O distances (Langer 2001a) as a function of composition. The results indicate relatively strong local site relaxation with a value of =0.77.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号