首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gondwana Research》2013,23(3-4):910-927
We present LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) U–Pb detrital and igneous zircon data of poly-deformed metamorphic and igneous rocks of the Ayú area, southern Mexico. These rocks were previously inferred to be part of the Late Paleozoic Acatlán Complex, but new age data indicate that they formed in the Mesozoic and should be placed in the newly designated Ayú Complex. The Ayú Complex comprises polydeformed metasedimentary rocks (Chazumba Lithodeme) of a turbidite-like protolith that are intercalated with boudinaged ortho-amphibolites with transitional arc- to MORB tholeiitic geochemistry. In the south, the metasedimentary sequence is affected by a ca. 171 Ma partial melting which formed the Magdalena Migmatite. Migmatization was accompanied by 171–168 Ma intrusions of granodioritic, dioritic, and granitic dikes and sheets as well as pegmatite bodies, which are characterized by inherited zircon populations of ca. 260–290, 320–360, 420–480, 880–990, and 1080–1250 Ma that are also found in the Chazumba Lithodeme. U–Pb (detrital zircon) dating of seven metasedimentary samples from the migmatized and unmigmatized Chazumba Lithodeme yielded youngest detrital zircons and clusters of 192, 198, 214, 250, 266, and 291 Ma, and are interpreted to reflect the Late Triassic–Middle Jurassic deposition of turbiditic rocks. The transitional arc–tholeiitic geochemistry of the Chazumba amphibolites is consistent with turbidite sedimentation in a back-arc environment along a rifted passive margin, close to a contemporaneous magmatic arc. Inferred flattening of the subduction zone led to subduction erosion during the Early–Middle Jurassic and underthrusting of the Chazumba Lithodeme to depths equivalent to amphibolite facies metamorphism. Steepening of the subducting slab and diachronous rifting within the Gulf of Mexico contributed to extensional tectonics recorded on the Mexican mainland and facilitated the tectonic exhumation of the Chazumba Lithodeme by normal faulting along the reactivated Providencia shear zone during the Middle–Late Jurassic. More generally, the documentation of arc-back arc assemblages in the Ayú Complex requires deposition adjacent to a subducting ocean, and thus supports a Pangea-A reconstruction that was synchronous with the breakup of Pangea.  相似文献   

2.
A first palynostratigraphic scheme of Upper Triassic deposits in northern Switzerland was established based on spore-pollen associations and dinoflagellate cyst records from the upper part of the Upper Triassic Klettgau Formation and the lower part of the Lower Jurassic Staffelegg Formation. Drill cores from the Adlerberg region (Basel Tabular Jura) and from Weiach (northern part of Canton Zurich) as well as from an outcrop at the Chilchzimmersattel (Basel Folded Jura) were studied and five informal palynological associations are distinguished. These palynological associations correlate with palynological association of the Central European Epicontinental Basin and the Tethyan realm and provide a stratigraphic framework for the uppermost Triassic sediments in northern Switzerland. Throughout the uppermost Triassic to Jurassic palynological succession a remarkable prominence of Classopollis spp. is observed. Besides Classopollis spp. the three Rhaetian palynological associations A to C from the Upper Triassic Belchen Member include typical Rhaetian spore-pollen and dinoflagellate taxa (e.g., Rhaetipollis germanicus, Geopollis zwolinskae, Rhaetogonyaulax rhaetica, and Dapcodinium priscum). Association B differs from association A in a higher relative abundance of the sporomorph taxa Perinopollenites spp. and the consistent occurrence of Granuloperculatipollis rudis and Ricciisporites tuberculatus. Spore diversity is highest in the late Rhaetian palynological association C and includes Polypodiisporites polymicroforatus. A Rhaetian age for the Belchen Member is confirmed by palynological associations A–C, but there is no record of the latest Rhaetian and the earliest Jurassic. In contrast to the Rhaetian palynological associations the Early Jurassic associations W and D include Pinuspollenites spp., Trachysporites fuscus (in association W), and Ischyosporites variegatus. In the view of the end-Triassic mass extinction and contemporaneous environmental changes the described palynofloral succession represents the pre-extinction phase (associations A and B) including a distinct transgression, the extinction phase (association C) associated with a regression, and the post-extinction phase (association W).  相似文献   

3.
We present U–Pb zircon ages from a phosphate-cemented pebbly sandstone dredged from the central Lord Howe Rise and a 97 Ma rhyolite drilled on the southern Lord Howe Rise. Four granitoid pebbles from the sandstone give U–Pb ages in the range 216–183 Ma. Most detrital zircons in the bulk sandstone are also Late Triassic–Early Jurassic, but subordinate populations of Late Cretaceous and Precambrian zircons are present. The pebbly sandstone's highly restricted Late Triassic–Early Jurassic zircon population indicates the nearby occurrence of underlying basement plutons that are the same age as parts of the I-type Darran Suite, Median Batholith of New Zealand and supports a continuation of the Early Mesozoic magmatic arc northwest from New Zealand. Zircon cores from the southern Lord Howe Rise rhyolite do not yield ages older than 97 Ma and thus provide no information about older basement.  相似文献   

4.
The Triassic–Jurassic boundary is characterized by strong perturbations of the global carbon cycle, triggered by massive volcanic eruptions related to the onset of the Central Atlantic Magmatic Province. These perturbations are recorded by negative carbon isotope excursions (CIEs) which have been reported worldwide. In this study, Triassic–Jurassic boundary sections from the southern margin of the Central European Basin (CEB) located in northern Switzerland are analyzed for organic carbon and nitrogen isotopes in combination with particulate organic matter (POM) analyses. We reconstruct the evolution of the depositional environment from Late Triassic to Early Jurassic in northern Switzerland and show that observed negative shifts in δ13C of the total organic carbon (δ13CTOC) in the sediment are only subordinately influenced by varying organic matter (OM) composition and primarily reflect global changes in the carbon cycle. Based on palynology and the stratigraphic positions of isotopic shifts, the δ13CTOC record of the studied sections is correlated with the GSSP section at Kuhjoch (Tethyan realm) in Austria and with the St. Audrie’s Bay section (CEB realm) in southwest England. We also show that in contrast to POM analyses the applicability of organic carbon/total nitrogen (OC/TN) atomic ratios and stable isotopes of total nitrogen (δ15NTN) for detecting changes in source of OM is limited in marginal depositional environments with frequent changes in lithology and OM contents.  相似文献   

5.
Although the Permian–Triassic Semanggol Formation is widely distributed in northwestern Peninsula Malaysia and is made of various lithofacies, its sedimentology and possible relation with the Permian–Triassic boundary (PTB) were not considered before. In this study, detailed facies analysis was conducted for two sections of the Semanggol Formation at the Bukit Kukus and Baling areas, South Kedah to clarify its sedimentology and relation to the PTB. Four facies from the Permian part of the Semanggol Formation that were identified at the Bukit Kukus section include laminated black mudstone, interbedded mudstone and sandstone, volcanogenic sediments, and bedded chert. In Baling area, the Triassic part of the formation is classified into three members. The lower member comprises of claystone and bedded chert facies, while the middle member is composed of sandstone and claystone interbeds (rhythmite). On the other hand, the upper member is grouped into two main units. The lower unit is mainly claystone and includes two facies: the varve-like laminated silt and clay and massive black claystone. The upper unit is composed of various sandstone lithofacies ranging from hummocky cross stratified (HCS) sandstone to thinly laminated sandstone to burrowed sandstone facies. The HCS sandstones occur as two units of fine-grained poorly sorted sandstone with clay lenses as flaser structure and are separated by a hard iron crust. They also show coarse grains of lag deposits at their bases. The laminated black mudstone at the lowermost part of the Semanggol Formation represents a reducing and quite conditions, which is most probably below the fairweather wave base in offshore environment that changed upwards into a fining upward sequence of tide environment. Abundance of chert beds in the volcanogenic sediments suggests the deposition of tuffs and volcanic ashes in deep marine setting which continues to form the Permian pelagic bedded chert and claystone. The bedded chert in the lower member of the Triassic section suggests its formation in deep marine conditions. The rhythmic sandstone and claystone interbeds of the middle member are suggestive for its formation as a distal fan of a turbidite sequence. Lithology and primary sedimentary structure of the upper member suggest its deposition in environments range from deep marine represented by the varve-like laminated silt and clay to subtidal environment corresponds to the massive black claystone to coastal environment represented by the hummocky sandstone units and reaches the maximum regression at the hiatus surface. Another cycle of transgression can be indicated from the second hummocky unit with transgressive lag deposits that develops to relatively deeper conditions as indicated from the formation of relatively thick laminated sandstone and bioturbated massive sandstone facies that represent tidal and subtidal environment, respectively. Late Permian lithological variation from the radiolarian chert into early Triassic claystone probably resulted from a decrease in productivity of radiolarians and might represent a PTB in the Semanggol Formation. Volcanogenic sediments in the studied section can be used as an evidence for volcanic activities at the end of the Permian, which is probably connected to the nearby volcanic ash layers in the eastern China, the ultimate cause of the PTB in this area. Black mudstone in the Permian part of the studied section may be interrelated to the Latest Permian Anoxia that started to build in the deep ocean well before the event on shallow shelves.  相似文献   

6.
7.
In the interval of the Triassic–Jurassic boundary, 80% of the marine species became extinct. Four main hypotheses about the causes of this mass extinction are considered: volcanism, climatic oscillations, sea level variations accompanied by anoxia, and asteroid impact events. The extinction was triggered by an extensive flooding of basalts in the Central Atlantic Magmatic Province. Furthermore, a number of meteoritic craters have been found. Under the effect of cosmic causes, two main sequences of events developed on the Earth: terrestrial ones, leading to intensive volcanism, and cosmic ones (asteroid impacts). Their aftermaths, however, were similar in terms of the chemical compounds and aerosols released. As a consequence, the greenhouse effect, dimming of the atmosphere (impeding photosynthesis), ocean stagnation, and anoxia emerged. Then, biological productivity decreased and food chains were destroyed. Thus, the entire ecosystem was disturbed and a considerable part of the biota became extinct.  相似文献   

8.
The latest Triassic to earliest Jurassic transition has been widely studied due the occurrence of a major global extinction associated with a global hyperthermal event in this interval. Furthermore, a number of distinct geochemical events in the global carbon cycle can be recognised in the stable-isotope record across this boundary interval at many localities. Two fully-cored boreholes from East Antrim in Northern Ireland (Carnduff-1 and Carnduff-2) have penetrated sediments of latest Triassic to Early Jurassic age (Rhaetian to Early Sinemurian). Ammonites, foraminifera, ostracods and palynomorphs provide a robust chronology as well as insights to palaeoenvironmental conditions during this period. The sedimentary and palynological evidence support a largely marginal-marine setting for the sediments of the Triassic Penarth Group while a range of palaeontological evidence shows that the Early Jurassic Waterloo Mudstone Formation represents shallow-marine, shelf conditions that represent generally well-oxygenated bottom waters, with little evidence for dysoxia. Detailed ammonite biostratigraphy (ammonites first occur about 7.5 m up from the base of the Lias Group) indicates that the cores represent largely continuous sedimentation through the Hettangian and earliest Sinemurian (to Turneri Chronozone, Birchi Subchronozone). Stable-isotope analysis of both carbonate and organic carbon show a distinct carbon isotope excursion (CIE) in both fractions through the Cotham and Langport members (Lilstock Formation, Penarth Group, latest Triassic) which are considered to correlate with the distinctive ‘Initial’ CIE witnessed in SW England and probably the GSSP and other sites across the world.  相似文献   

9.
Upper Triassic to Upper Jurassic strata in the western and northern Sichuan Basin were deposited in a synorogenic foreland basin. Ion–microprobe U–Pb analysis of 364 detrital zircon grains from five Late Triassic to Late Jurassic sandstone samples in the northern Sichuan Basin and several published Middle Triassic to Middle Jurassic samples in the eastern Songpan–Ganzi Complex and western and inner Sichuan Basin provide an initial framework for understanding the Late Triassic to Late Jurassic provenance of western and northern Sichuan Basin. For further understanding, the paleogeographic setting of these areas and neighboring hinterlands was constructed. Combined with analysis of depocenter migration, thermochronology and detrital zircon provenance, the western and northern Sichuan Basin is displayed as a transferred foreland basin from Late Triassic to Late Jurassic. The Upper Triassic Xujiahe depocenter was located at the front of the Longmen Shan belt, and sediments in the western Sichuan Basin shared the same provenances with the Middle–Upper Triassic in the Songpan–Ganzi Complex, whereas the South Qinling fed the northern Sichuan Basin. The synorogenic depocenter transferred to the front of Micang Shan during the early Middle Jurassic and at the front of the Daba Shan during the middle–late Middle Jurassic. Zircons of the Middle Jurassic were sourced from the North Qinling, South Qinling and northern Yangtze Craton. The depocenter returned to the front of the Micang Shan again during the Late Jurassic, and the South Qinling and northern Yangtze Craton was the main provenance. The detrital zircon U–Pb ages imply that the South and North China collision was probably not finished at the Late Jurassic.  相似文献   

10.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

11.
The early stage of Sichuan Basin formation was controlled by the convergence of three major Chinese continental blocks during the Indosinian orogeny that include South China,North China,and Qiangtang blocks.Although the Late Triassic Xujiahe Formation is assumed to represent the commencement of continental deposition in the Sichuan Basin,little research is available on the details of this particular stratum.Sequence stratigraphic analysis reveals that the Xujiahe Formation comprises four third-order depositional sequences.Moreover,two tectono-sedimentary evolution stages,deposition and denudation,have been identified.Typical wedge-shaped geometry revealed in a cross section of the southern Sichuan Basin normal to the Longmen Shan fold-thrust belt is displayed for the entire Xujiahe Formation.The depositional extent did not cover the Luzhou paleohigh during the LST1 to LST2 (LST,TST and HST mean Iowstand,transgressive and highstand systems tracts,1,2,3 and 4 represent depositional sequence 1,2,3 and 4),deltaic and fluvial systems fed sediments from the Longmen Shan belt,Luzhou paleohigh,Hannan dome,and Daba Shan paleohigh into a foreland basin with a centrally located lake.The forebulge of the western Sichuan foreland basin was located southeast of the Luzhou paleohigh after LST2.According to the principle of nonmarine sequence stratigraphy and the lithology of the Xujiahe Formation,four thrusting events in the Longmen Shan fold-thrust belt were distinguished,corresponding to the basal boundaries of sequences 1,2,3,and 4.The northern Sichuan Basin was tilted after the deposition of sequence 3,inducing intensive erosion of sequences 3 and 4,and formation of wedge-shaped deposition geometry in sequence 4 from south to north.The tilting probably resulted from small-scale subduction and exhumation of the western South China block during the South and North China block collision.  相似文献   

12.
The stratigraphic section of the Upper Triassic–Lower Jurassic Whitmore Point Member of the Moenave Formation at Potter Canyon, Arizona, comprises c. 26 m of gray to black shales and red mudstones interbedded with mainly sheet-like siltstones and sandstones. These strata represent deposition from suspension and sheetflow processes in shallow, perennial meromictic to ephemeral lakes, and on dry mudflats of the terminal floodout of the northward-flowing Moenave stream system. The lakes were small, as indicated by the lack of shoreline features and limited evidence for deltas. Changes in base level, likely forced by climate change, drove the variations between mudflat and perennial lacustrine conditions. Lenticular sandstones that occur across the outcrop face in the same stratigraphic interval in the lower part of the sequence represent the bedload fill of channels incised into a coarsening-upward lacustrine sequence following a fall in base level. These sandstones are distinctive for the common presence of over-steepened bedding, dewatering structures, and less commonly, folding. Deformation of these sandstones is interpreted as aseismic due to the lack of features typically associated with seismicity, such as fault-graded bedding, diapirs, brecciated fabrics and clastic dikes. Rapid deposition of the sands on a fluid-rich substrate produced a reverse density gradient that destabilized, and potentially fluidized the underlying, finer-grained sediments. This destabilization allowed synsedimentary subsidence of most of the channel sands, accompanied by longitudinal rotation and/or ductile deformation of the sand bodies.  相似文献   

13.
14.
Continuous shallow marine carbonates spanning the Triassic–Jurassic boundary are exposed in the Karaburun Peninsula, Western Turkey. The studied section (Tahtaiskele section) consists of Upper Triassic cyclic shallow marine carbonates intercalated with clastics overlain by Lower Liassic carbonates. Based on the microfacies stacking patterns, three main types of shallowing-upward cycles have been recognized. Cycles are mostly composed of subtidal facies at the bottom, intertidal/supratidal facies and/or subaerial exposure structures at the top. The duration of the cycles suggests that cycles were driven by the precessional Milankovitch rhytmicity. In the sequence stratigraphic frame of the Tahtaiskele section 4 sequence boundaries were detected and globally correlated. The first sequence boundary is located at the Alaunian–Sevatian boundary nearly coinciding with the first appearance of Triasina hantkeni. The second falls in the Rhaetian corresponding to a major sea level fall which led to the invasion of forced regressive siliciclastic deposits over the peritidal carbonates. The third occurs close to the T/J boundary and the fourth lies slightly above the base of the Jurassic. In the studied section, extinction, survival and recovery intervals have been recognized based on the stratigraphic occurrence patterns of benthic foraminifera and algae. Foraminifers became nearly totally extinct in the inner carbonate shelves at the Triassic–Jurassic boundary and an interval of approximately 0.5 my passed before the begining of the recovery of Jurassic foraminifera.  相似文献   

15.
16.
The Wunugetushan porphyry Cu–Mo deposit is located in northeastern China. The deposit lies within the Mongolia–Erguna metallogenic belt, which is associated with the evolution of the Mongol–Okhotsk Ocean. The multiple episodes of magmatism in the ore district, occurred from 206 to 173 Ma, can be divided into pre-mineralization stage (biotite granite), mineralization stage (monzogranitic porphyry and rhyolitic porphyry), and post-mineralization stage (andesitic porphyry). The biotite granite has (87Sr/86Sr)i values of 0.704105–0.704706, εNd(t) values of ?0.67 to ?0.07, and εHf(t) values of ?0.4 to 2.8, yielding Hf two-stage model ages (TDM2) 1250–1067 Ma, and Nd model ages of 1.04–0.96 Ga, indicating that the pre-mineralization magmas were generated by the remelting of Neoproterozoic juvenile crustal material. The monzogranitic porphyry has (87Sr/86Sr)i values of 0.704707–0.706134, εNd(t) values of 0.29–1.33, and εHf(t) values of 1.0–2.9, yielding TDM2 model ages of 1173–1047 Ma. The rhyolitic porphyry has (87Sr/86Sr)i ratio of 0.702129, εNd(t) value of ?0.21, and εHf(t) values of ?0.5 to 7.1, TDM2 model ages from 1269 to 782 Ma. These results show that the magmas of mineralization stage were generated by the partial melting of juvenile crust mixed with mantle-derived components. The andesitic porphyry has (87Sr/86Sr)i ratio of 0.705284, εNd(t) value of 0.82, and εHf(t) values from 4.1 to 7.4, indicating that the post-mineralization magma source contained more mantle-derived material. The Mesozoic Cu–Mo deposits which genetically related to Mongol–Okhotsk Ocean were temporally distributed in Middle to Late Triassic (240–230 Ma), Early Jurassic (200–180 Ma), and Later Jurassic (160–150 Ma) period. The Middle Triassic to Early Jurassic Cu–Mo mineralization was dominated by Mongol–Okhotsk oceanic plate southeast-directed subducted beneath the Erguna massif. The Later Jurassic Cu–Mo mineralization was controlled by the continent–continent collision between Siberia plate and Erguna massif.  相似文献   

17.
18.
The results of this study were used to identify a reversed polarity magnetozone, referred to as M17r, in Berriasian sections of the Nordvik Peninsula (northern East Siberia) within the normal polarity magnetozone (M18n) from previous studies. The new magnetozone embraces the Volgian–Ryazanian boundary (Chetaites chetae/C. sibiricus zonal boundary). It was also found that the former magnetozone M17r at Nordvik, which includes the C. sibiricus/Hectoroceras kochi zonal boundary should correspond to magnetozone M16r. Using magnetostratigraphic and biostratigraphic criteria proves that the Boreal C. sibiricus Zone is correlated with at least the major part of the Tethyan Tirnovella occitanica Zone, and the Boreal H. kochi Zone is correlated with the lower part of the Malbosiceras paramimounum Subzone of the Tethyan Fauriella boissieri Zone.  相似文献   

19.
The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic–Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian–Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian–Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.  相似文献   

20.
In orogenic belts, a basal décollement zone often develops at depth to accommodate the shortening due to folding and thrusting of the sedimentary cover. In the Early Mesozoic intracontinental Xuefengshan Belt of South China, such a décollement zone is exposed in the core of anticlines formed by the emplacement of the late-orogenic granitic plutons. Our detailed, multi-scale structural analysis documents a synmetamorphic ductile deformation. In the basal décollement, the Neoproterozoic pelite and sandstone, and the intruding Early Paleozoic granites were deformed and metamorphosed into mylonites and orthogneiss, respectively. The metamorphic foliation contains a NW–SE stretching lineation associated with top-to-the-NW kinematic indicators. The ductile shearing of these high-strained rocks can be correlated with NW-verging folds and thrusts recognized in the Neoproterozoic to Early Triassic sedimentary cover. Monazite U–Th–Pbtot chemical dating, and zircon SIMS U–Pb dating provide age constraints of the ductile shearing between 243 and 226?Ma, and late-orogenic granite emplacement around 235–215?Ma. In agreement with recent geochronological data, these new results show that the Xuefengshan Belt is an Early Mesozoic orogen dominated by the NW-directed shearing and thrusting. At the southeastern boundary of the Xuefengshan Belt, the Chenzhou-Linwu fault separates the Early Mesozoic domain to the NW from the Early Paleozoic domain to the SE. The tectonic architecture of this belt was possibly originated from the continental underthrusting to the SE of the South China block in response to northwest-directed subduction of the Paleo-Pacific plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号