首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the end of the Cambodian Civil War in 1998, the population of the Oddar Meanchey province has drastically increased despite the lack of adequate infrastructure, including basic amenities such as drinking-water supply. To improve the access to drinking water, governmental and aid agencies have focussed on drilling shallow boreholes. The use of groundwater for irrigation is also a growing concern to cope with the occasional late arrival of the rainy season or to produce food during the dry season. Since the groundwater resource in the province has not been documented, a 4-year study was undertaken (2011–2014), aiming to estimate the capability of groundwater to supply domestic needs and supplementary irrigation for rice production. Aquifer properties were estimated by combined use of hydrogeological techniques with the geophysical magnetic resonance sounding method. Groundwater storage and recharge were estimated based on new developments in the application of the geophysical method for quantifying specific yield. The median groundwater storage of the targeted sandstone aquifer is 173 mm, the recharge is diffuse and annually ranges from 10 to 70 mm, and the transmissivity is low to medium. Simulations of pumping indicate that the aquifer can easily supply 100 L of drinking water per capita daily, even considering the estimated population in 2030. However, the shallow aquifer can generally not deliver enough water to irrigate paddy fields of several hectares during a 2-month delay in the onset of the monsoon.  相似文献   

2.
Groundwater resource potential is the nation’s primary freshwater reserve and accounts for a large portion of potential future water supply. This study focused on quantifying the groundwater resource potential of the Upper Gilgel Gibe watershed using the water balance method. This study began by defining the project area’s boundary, reviewing previous works, and collecting valuable primary and secondary data. The analysis and interpretation of data were supported by the application of different software like ArcGIS 10.4.1. Soil water characteristics of SPAW (Soil-plant-air-water) computer model, base flow index (BFI+3.0), and the water balance model. Estimation of the areal depth of precipitation and actual evapotranspiration was carried out through the use of the isohyetal method and the water balance model and found to be 1 664.5 mm/a and 911.6 mm/a, respectively. A total water volume of 875 829 800 m3/a is estimated to recharge the aquifer system. The present annual groundwater abstraction is estimated as 10 150 000 m3/a. The estimated specific yield, exploitable groundwater reserve, and safe yield of the catchment are 5.9%, 520 557 000 m3/a, and 522 768 349 m3/a respectively. The total groundwater abstraction is much less than the recharge and the safe yield of the aquifer. The results show that there is a sufficient amount of groundwater in the study area, and the groundwater resources of the area are considered underdeveloped.  相似文献   

3.
High water demand for domestic use in Douala with over 3 million inhabitants is met mainly by shallow groundwater. Field measurements and water sampling in January 2015 were carried out to examine the major controls on the groundwater composition and spatial view of ions in the water, timing of recharge and link between the recharge process and quality of the water. Fifty-two water samples were analysed for major ions and stable hydrogen and oxygen isotopes. Low pH values (3.61–6.92) in the groundwater indicated an acidic aquifer; thus, prone to acidification. The dominant water type was Na–Cl. Nitrate, which exceeded the WHO guide value of 50 mg/l in 22% of the groundwater, poses a health problem. Mass ratios of Cl?/Br? in the water ranged from 54 to 3249 and scattered mostly along the mixing lines between dilute waters, septic-tank effluent and domestic sewage. A majority of the samples, especially the high NO3 ? shallow wells, clustered around the septic-tank effluent-end-member indicating high contamination by seepage from pit latrines; hence, vulnerable to pollution. Stable isotopes in the groundwater indicated its meteoric origin and rapid infiltration after rainfall. The δ18O values showed narrow ranges and overlaps in rivers, springs, open wells and boreholes. These observations depict hydraulic connectivity, good water mixing and a homogeneous aquifer system mainly receiving local direct uniform areal recharge from rainfall. The rapid and diffused recharge favours the leaching of effluent from the pit toilets into the aquifer; hence, the high NO3 ? and Cl? in shallow wells. Silicate weathering, ion exchange and leaching of waste from pit toilets are the dominant controls on the groundwater chemistry. Drilling of deep boreholes is highly recommended for good-quality water supply. However, due the hydraulic connection to the shallow aquifer, geochemical modelling of future effects of such an exploitation of the deeper aquifer should support groundwater management and be ahead of the field actions.  相似文献   

4.
The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3?>?50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity.  相似文献   

5.
The groundwater of the deep Ye?ilköy aquifer is the only water resource for agricultural and domestic consumption at the Karpaz Peninsula of Cyprus, which stretches approximately 100 km from the northeast of capital Nicosia to the northern tip of Cyprus. During the last decade, over-pumping and following dry periods have depleted the groundwater resources and the water surface elevation of the aquifer has dropped. The aim of this study is to understand the behavior of the Ye?ilköy aquifer in the last decade for the proper management of groundwater resources. This has been achieved based on well survey and field survey studies, monitoring programs followed by pumping tests, and safe yield analysis. Most of the research effort has been focused on field and well survey studies to quantify agricultural water consumption and abstraction rates from the aquifer. A long-term groundwater level monitoring program, short-term continuous groundwater monitoring and pumping tests provided information for the regression analyses while deriving a sixth order polynomial relationship between the period parameter and the head parameter. The equation was helpful to predict the short-term behavior of the water level when the present hydrogeological conditions prevail. The pumping test results satisfied the hydraulic properties of calcarenite formation yielding T = 1,782 m2/day and S = 0.0012. The results of safe yield analysis show that the annual deficit of the aquifer is 0.496 million cubic meters (MCM), which is equivalent to a 0.6 m drop in groundwater levels per year. Finally, the resultant annual safe yield of the aquifer is estimated as 0.84 MCM.  相似文献   

6.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

7.
The Swanscombe area of Kent, SE England represents a typical example of a heavily quarried Chalk area currently undergoing re-development. Because the Chalk is also an important aquifer, a good understanding of groundwater movement is required if environmental impacts are to be minimised and the water resource maximised. In particular, the nature of the relationship between the River Darent and groundwater in the Swanscombe Chalk Block requires better characterisation. Here, ‘environmental tracers’ in the form of ambient concentrations of stable isotopes, chlorofluorocarbons (CFCs), sulphur hexafluoride (SF6) and tritium (3H) are used to investigate this and other aspects of groundwater movement in the vicinity of the quarries. Stable isotopic contrasts indicate little evidence for widespread river infiltration to the regional Chalk aquifer, although stable isotope and 3H data suggest that 20–35% of the abstraction by river-valley public water supply boreholes may be derived from the river. The CFCs, while present at above-modern concentrations in almost all groundwaters, can be used as tracers, indicating basically S–N flowpaths in the area south of the quarries, though sub-karstic conduits associated with areas of Palaeogene cover add a level of uncertainty at the local scale. Simple piston flow residence times based on SF6 range from 1 to 17 a, but the data are probably better interpreted in terms of mixing between varying amounts of modern recharge derived from the south and deeper stored groundwater. The information gained from environmental tracers can therefore contribute to effective resource management.  相似文献   

8.
An inherent aspect of hydrogeology is the dynamic character of groundwater flow within the more passive lithospheric medium. Prediction therefore requires insight into the spatial pattern of aquifer properties as well as the dynamic character of groundwater flow systems. Both aspects together determine hydrogeological system behaviour in space and time. The spatial characteristics of an aquifer are mainly based on geological and geomorphological structure, whereas the dynamics of the system result predominantly from climate and topography; knowledge of paleoconditions are a prerequisite for sound understanding of present systems. The integration of exploration and forecast is illustrated by two case studies. The first study focuses on an assessment of groundwater resource and their sustainable development in semi-arid Botswana. The second study concerns the impact of land and water management in the Netherlands coastal area on the groundwater regime and its future development, including the redistribution of salt and fresh groundwater on a long time scale.  相似文献   

9.
Groundwater management in northern Iraq   总被引:1,自引:0,他引:1  
Groundwater is vital and the sole resource in most of the studied region of northern Iraq. It has a significant role in agriculture, water supply and health, and the elimination of poverty in rural areas. Although Iraq is currently dramatically disturbed by complex political and socio-economic problems, in its northern part, i.e. the Kurdish-inhabited region, fast urbanization and economic expansion are visible everywhere. Monitoring and water management schemes are necessary to prevent aquifer over-exploitation in the region. Artificial recharge with temporary runoff water, construction of subsurface dams and several other aquifer management and regulation measures have been designed, and some implemented, in order to improve the water situation. Recommendations, presented to the local professionals and decision-makers in water management, include creation of Water Master Plans and Water User Associations, synchronization of drilling programmes, rehabilitation of the existing well fields, opening of new well fields, and the incorporation of new spring intakes in some areas with large groundwater reserves, as well as construction of numerous small-scale schemes for initial in situ water treatment where saline groundwater is present.  相似文献   

10.
Dar es Salaam Quaternary coastal aquifer is a major source of water supply in Dar es Salaam City used for domestic, agricultural, and industrial uses. However, groundwater overdraft and contamination are the major problems affecting the aquifer system. This study aims to define the principal hydrogeochemical processes controlling groundwater quality in the coastal strip of Dar es Salaam and to investigate whether the threats of seawater intrusion and pollution are influencing groundwater quality. Major cations and anions analysed in 134 groundwater samples reveal that groundwater is mainly affected by four factors: dissolution of calcite and dolomite, weathering of silicate minerals, seawater intrusion due to aquifer overexploitation, and nitrate pollution mainly caused by the use of pit latrines and septic tanks. High enrichment of Na+ and Cl? near the coast gives an indication of seawater intrusion into the aquifer as also supported from the Na–Cl signature on the Piper diagram. The boreholes close to the coast have much higher Na/Cl molar ratios than the boreholes located further inland. The dissolution of calcite and dolomite in recharge areas results in Ca–HCO3 and Ca–Mg–HCO3 groundwater types. Further along flow paths, Ca2+ and Na+ ion exchange causes groundwater evolution to Na–HCO3 type. From the PHREEQC simulation model, it appears that groundwater is undersaturated to slightly oversaturated with respect to the calcite and dolomite minerals. The results of this study provide important information required for the protection of the aquifer system.  相似文献   

11.
北京西山岩溶水应急水源地水文地质特征及开采潜力分析   总被引:3,自引:2,他引:1  
应急水源地位于北京西山四季青地区,取水层位为奥陶系含水层,属覆盖型水源地。奥陶系岩溶地下水水量大、水质优良,是保障北京供水安全的后备水源。本文在综合分析奥陶系岩溶地下水水文地质特征基础上,以群孔抽水试验为基础,采用相关分析法预测水位,从岩溶地下水的富水性、地下水流场、地下水资源方面分析岩溶水的开采潜力,确保在出现水源危机时,岩溶地下水能够作为后备水源地为城市供水。结果表明,岩溶地下水应急水源地岩溶裂隙发育,补给条件好,地下水径流强度大,水质优良,具有6万m3/d的开采潜力,即当水源地增加每日6万m3应急开采时,水位埋深预测值为52.94m,能够满足现有取水设备条件,且不会影响其它水源井的运行。   相似文献   

12.
 The Heretaunga Plains, Hawke's Bay, New Zealand, is underlain by Quaternary fluvial, estuarine-lagoonal, and marine deposits infilling a subsiding syncline. Within the depositional sequence, river-channel gravels form one of the most important aquifer systems in New Zealand. An interconnected unconfined–confined aquifer system contains groundwater recharged from the Ngaruroro River bed at the inland margin of the plain, 20 km from the coast. At the coast, gravel aquifers extend to a depth of 250 m. In 1994–95, 66 Mm3 of high quality groundwater was abstracted for city and rural water supply, agriculture, industry, and horticulture. Use of groundwater, particularly for irrigation, has increased in the last 5 years. Concern as to the sustainability of the groundwater resource led to a research programme (1991–96). This paper presents the results and recommends specific monitoring and research work to refine the groundwater balance, and define and maintain the sustainable yield of the aquifer system. Three critical management factors are identified. These are (1) to ensure maintenance of consistent, unimpeded groundwater recharge from the Ngaruroro River; (2) to specifically monitor groundwater levels and quality at the margins of the aquifer system, where transmissivity is <5000 m2/d and summer groundwater levels indicate that abstraction exceeds recharge; (3) to review groundwater-quality programs to ensure that areas where contamination vulnerability is identified as being highest are covered by regular monitoring. Received, January 1998 / Revised, August 1998, March 1999 / Accepted, April 1999  相似文献   

13.
Failure of borehole sources in weathered and fractured crystalline basement aquifers in Malawi in southern Africa has been linked with poor borehole design, mechanical failure and badly sited boreholes. However, recent work in Malawi indicates that demand may now exceed long-term resource potential in some places and that this is also a cause of water point failure. An 11-year climate cycle (including a wet and dry period) necessitates overdraft from groundwater storage during the dry-cycle years before episodic rainfall events in the wetter part of the cycle again recharge the aquifers. Data, particularly groundwater hydrograph data, are sparse, but sufficient to evaluate the long-term renewable groundwater potential for both fractured and weathered basement-aquifer types in each of the 15 management areas in Malawi. The groundwater potential or long-term renewable resource (recharge) is given by the sum of Darcian throughflow and dry-season depletion of storage. Estimated rural demand exceeds the renewable resource in the fractured-rock aquifer in two management units and in the weathered-rock aquifer in two other units. Although there is inherent uncertainty in the water-balance estimates, the likelihood that rural demand is exceeding long-term average recharge in some areas is cause for concern.  相似文献   

14.
The distribution of 18O and 2H in various water sources indicates that groundwater recharge is due to local rainfall occurring within the basins. Groundwater recharge takes place under a bypass flow mechanism and matrix diffuse flow and is 3% and 2% of the long-term mean annual rainfall of 550 mm for the Makutapora and Hombolo basins, respectively. Chloride mass balance indicates that 60% and 40% of the total groundwater recharge takes place through macropores and matrix flow, respectively. Sporadic variations in 18O, 2H and chloride among adjacent boreholes suggest existence of a discrete fractured aquifer and/or dominance of local recharge. The relationship between δ2H and chloride indicates that groundwater salinization is due to the leaching of surficial and soil salts during high intensity rainfall, which causes high surface runoff and flash floods. It has been concluded that the isotopic and chemical character of groundwater in fractured semi-arid areas may provide the most effective complementary means of groundwater recharge assessment and therefore is very useful in the management of the water resources.  相似文献   

15.
The aquifer of the semi-arid Kairouan plain has been exploited for decades to supply the growing irrigated agriculture and the need of drinking water. In parallel, the major hydraulic works drastically changed the natural groundwater recharge processes. The continuous groundwater level drop observed since the 1970s naturally raises the question of groundwater storage sustainability. To date, hydrogeological studies focused on groundwater fluxes, but the total amount of groundwater stored in the aquifer system has never been fully estimated. This is the purpose of the present paper. A complete database of all available geological, hydrogeological and geophysical data was created to build a 3D lithology model. Then, the lithological units were combined with the hydraulic properties to estimate the groundwater storage. Over the 700 km2 of the modelled area, the estimated storage in 2013 was around 18?×?109 m3 (equivalent to 80 times the annual consumption of 2010) with a highly variable spatial distribution. In 45 years (1968–2013), 12% of the amount of groundwater stored in the aquifer has been depleted. According to these results, individual farms will face strong regional disparities for their access to groundwater in the near future.  相似文献   

16.
Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.  相似文献   

17.
The Deccan Traps or the basalts of western India are the largest exposure of basic lava flows covering about 500,000 km2. Groundwater occurrence in the Deccan Traps is in phreatic condition in the weathered zone above the hard rock and in semi-confined condition in the fissures, fractures, joints, cooling cracks, lava flow junctions and in the inter-trappean beds between successive lava flows, within the hard rock. Dug wells, dug-cum-bored wells and boreholes or bore wells are commonly used for obtaining groundwater. The yield is small, usually in the range of 1–100 m3/day. The average land holding per farming family is only around 2 ha. Recently, due to the ever increasing number of dug wells and deep bore wells, the water table has been falling in several watersheds, especially in those lying in the semi-arid region of the traps, so that now the emphasis has shifted from development to sustainable management. Issues like climatic change, poverty mitigation in villages, sustainable development, rapid urbanization of the population, and resource pollution have invited the attention of politicians, policy makers, government agencies and non-governmental organizations towards watershed management, forestation, soil and water conservation, recharge augmentation and, above all, the voluntary control of groundwater abstraction in the Deccan Traps terrain.  相似文献   

18.
五沟煤矿太原组上段灰岩岩溶裂隙水是矿井主采煤层(10煤)的主要充水含水层。通过对矿区水文地质边界条件、地面抽水试验和井下放水试验的分析,认为矿区水文地质边界受制于周边的较大型隔阻水断层,从而形成了较封闭的地下水系统;太原组上段灰岩含水层的富水性在平面上具有不均一性,在垂向具有随着深度的增加,岩溶发育有减弱的趋势,基本上属弱富水含水层,仅在局部构造发育带为中等富水含水层。利用利用surfer软件,绘制出矿区太原组灰岩水位等值线图;从图上可以看出,矿区目前太原组含水层水位标高总体呈北高南低,中间高两边低的态势,并在井田西南部形成以水5孔及J5-1孔为中心的低水位区。该研究对目前矿井防治水工作具有重要的指导意义。  相似文献   

19.
Groundwater is one of the important source of water supply to meet the requirements of National Capital Territory (NCT) of Delhi, India which is a fast developing urban conglomeration. An assessment of dynamic groundwater resources of NCT Delhi has been attempted based on the methodology known as Ground Water Resources Estimation Methodology—1997. The methodology includes assessment of annual replenishable groundwater resources using water level fluctuation approach and empirical norms, estimation of the annual quantity of groundwater withdrawal and categorization of the assessment units based on the status of groundwater utilization and water level trend. Annual replenishable groundwater resources of NCT Delhi is about 297 million cubic meter (mcm) while the annual groundwater draft is about 480 mcm. This is because of over-exploitation of replenishable resources in seven out of nine districts of the Capital Territory. Based on the assessment of dynamic groundwater resources, a broad groundwater management plan has been proposed in this paper. This include augmentation of groundwater resources through rain water harvesting schemes to be implemented on a large scale, regulation on groundwater withdrawal in vulnerable areas, development of Yamuna flood plain aquifer and declaration of Delhi ridge as groundwater sanctuary.  相似文献   

20.
Deep Quaternary groundwater is the main source for industrial, domestic, and agricultural water supply in the North China Plain (NCP). There is currently a regional decline of groundwater levels, deterioration of water quality and environmental geological problems induced by increasing exploitation of the NCP Quaternary aquifer system. To trace sources and transport processes of dissolved Cl in a regional aquifer system and to reveal hydrogeological characteristics of Quaternary complexes, δ37Cl, δ18O and δD, and chemical compositions (including F, Cl, Br) of the deep groundwater sampled from the northern flow system of the NCP were measured along the west–east groundwater flow paths. The measured δ37Cl values decreased from 0.39‰ to −2.22‰ (SMOC) along the groundwater flow direction, with increasing Cl concentrations. Marine aerosol input via rainfall is the main source of Cl in the deep groundwater near the recharge areas, and subsequent evaporation/evapotranspiration appears to be responsible for Cl accumulation. Mixing of recharge water with water of high-Cl and low-δ37Cl accounts for the pattern of δ37Cl and Cl concentration observed in Aquifer-3 along the west–east transect. The water with high-Cl and low-δ37Cl is likely from pore water released from compacted clays induced by over-exploitation of deep groundwater, suggesting that clay is a dominant subsurface source of Cl for groundwater where a regional depression cone is present in the Quaternary aquifers. The groundwater of Aquifer-4 in the Huang-Hua depression is potentially mixed with an upward flux of Cl from the Neogene aquifer through subvertical faults. Diffusion and ion filtration are two mechanisms invoked to explain the highly negative δ37Cl data for groundwater of Aquifer-4 in the Yanshan–Haixing areas, which provides new insight into solute migration and the hydraulic relationship in the strongly exploited groundwater system. This study using the conservative solute Cl provides additional important information for further investigations of the geochemistry of a wide range of reactive solutes in the Quaternary aquifer system, so guiding water resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号