首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
On the basis of the hydrographic data observed within the Canary Basin in autumn 1985, temperature-salinity properties, distributions of water masses and barocltne flow field, as well as the volume transports in this area are described more detailly. The analyses indicate that the activity in the waters of the Canary Basin is mainly attributed to the interleaving and mixing between the originated water masses (e. g. Surface Water, North Atlantic Central Water, Mediterranean Water and Deep Water) and the modified water masses (Subpolar Mode Water, Labrador Sea Water and Antarctic Intermediate Water) from the outside of the study area and the variation of themselves. The east recirculation of the Subtropic Gyre in the North Atlantic consists of Azores Current and Canary Current.Azores Current is formed with several flow branches around the Azores Island, while the main flow lies at 35?N south of the Azores Island. It begins to diverge near the 15?W. The return flow found off the Portugal coast may be its  相似文献   

3.
Processes relating to the formation of dense shelf water and intermediate water in the Okhotsk Sea were studied by examining oxygen isotope ratios (δ18O), salinity, and temperature. The salinity and δ18O of the cold dense shelf water on the northern continental shelf showed peculiar relationship. The relationship indicates that 3% of the mixed-layer water, having salinity of 32.6, froze and the remaining 97% became dense shelf water of salinities of more than 33.2 (σθ>26.7) during the sea ice formation. The salinity–δ18O relationship also shows that 20% of the Okhotsk Sea Intermediate Water at the σθ=26.8 level was derived from the dense shelf water. The remaining 80% came from the Western Subarctic Pacific water modified by diapycnal mixing of water affected by the surface cooling and freshening within the Okhotsk Sea. The mixing with dense shelf water contributes to only 26% of the temperature difference or 8% of the salinity difference between the original Pacific water and the Okhotsk Sea Intermediate Water at σθ=26.8. This result suggests that the cold and less saline properties of the Okhotsk Sea Intermediate Water are produced mainly by diapycnal mixing, rather than by mixing of the Pacific water with the dense shelf water.  相似文献   

4.
The circulation and hydrography of the north-eastern North Atlantic has been studied with an emphasis on the upper layers and the deep water types which take part in the thermohaline overturning of the Oceanic Conveyor Belt. Over 900 hydrographic stations were used for this study, mainly from the 1987–1991 period. The hydrographic properties of Subpolar Mode Water in the upper layer, which is transported towards the Norwegian Sea, showed large regional variation. The deep water mass was dominated by the cold inflow of deep water from the Norwegian Sea and by a cyclonic recirculation of Lower Deep Water with a high Antarctic Bottom Water content. At intermediate levels the dominating water type was Labrador Sea Water with only minor influence of Mediterranean Sea Water. In the permanent pycnocline traces of Antarctic Intermediate Water were found.Geostrophic transports have been estimated, and these agreed in order of magnitude with the local heat budget, with current measurements, with data from surface drifters, and with the observed water mass modification. A total of 23 Sv of surface water entered the region, of which 20 Sv originated from the North Atlantic Current, while 3 Sv entered via an eastern boundary current. Of this total, 13 Sv of surface water left the area across the Reykjanes Ridge, and 7 Sv entered the Norwegian Sea, while 3 Sv was entrained by the cold overflow across the Iceland-Scotland Ridge. Approximately 1.4 Sv of Norwegian Sea Deep Water was involved in the overflow into the Iceland Basin, which, with about 1.1 Sv of entrained water and 1.1 Sv recirculating Lower Deep Water, formed a deep northern boundary current in the Iceland Basin. At intermediate depths, where Labrador Sea Water formed the dominant water type, about 2 Sv of entrained surface water contributed to a saline water mass which was transported westwards along the south Icelandic slope.  相似文献   

5.
Previous work had examined an ocean model of the subpolar gyre of the North Atlantic Ocean that used the Gent and McWilliams parameterization with a variable eddy-transfer coefficient, and showed significant improvements to the model’s circulation and hydrography. This note examines an extended (80-year-long) integration of the same model and focuses on the adjustment of the intermediate and deep waters as well as on model stability. It is shown that the model is able to retain a good representation of the water masses, especially in the Labrador Sea, through the full integration. Labrador Sea Water dispersal is well simulated by the model in the western basin, with a good correspondence between the model and observational salinities on the σ2 = 36.95 isopycnal surface. Labrador Sea Water dispersal to the eastern basin is not nearly as well represented, as this water mass has trouble passing over the Mid-Atlantic Ridge in the model. The variable eddy-transfer coefficient significantly improves the model representation of the Cold Intermediate Layer on the Labrador shelf by reducing spurious diapycnal mixing. Finally, the evidence in this note suggests that open boundary conditions do not generate significant model drift, even for integrations approaching a century in length.  相似文献   

6.
The Japan Sea Intermediate Water; Its Characteristics and Circulation   总被引:6,自引:0,他引:6  
In the southern Japan Sea there is a salinity minimum layer between the Tsushima Current Water and the Japan Sea Proper Water. Since the salinity minimum corresponds to the North Pacific Intermediate Water, it is named the Japan Sea Intermediate Water (JIW). To examine the source and circulation of JIW, the basin-wide salinity minimum distribution was investigated on the basis of hydrographic data obtained in 1969. The young JIW, showing the highest oxygen concentration and the lowest salinity, is seen in the southwestern Japan Sea west of 133°E, while another JIW with lower oxygen and higher salinity occupies the southeastern Japan Sea south of the subpolar front. Since the young JIW shows high oxygen concentrations, high temperatures and low densities, the source of the water is probably in the surface layer. It is inferred that the most probable region of subduction is the subarctic front west of 132°E with the highest oxygen and the lowest salinity at shallow salinity minimum. In addition, property distributions suggest that JIW takes two flow paths: a eastward flow along the subarctic front and an southward flow toward the Ulleung Basin. On the other hand, a different salinity minimum from JIW occupies the northern Japan Sea north of the subarctic front, which shows an apparently higher salinity and high oxygen concentration than JIW. However, this salinity minimum is considered not to be a water mass but to be a boundary between overlying and underlying water masses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The vertical distribution of reactive mercury has been measured at two stations in the eastern North Atlantic and one station in the southeast Atlantic in conjunction with the IOC Open Ocean Baseline Survey. The average concentrations of reactive Hg in vertical profiles ranged from 0.70 to 1.07 pM with the highest values found at the northeast Atlantic stations and the lowest at the southeast station. No significant concentration gradients were found below the surface mixed layer at the two stations in the eastern North Atlantic. At station 7, in the southeast Atlantic, an increase in reactive Hg was noted in the water adjacent to the mixed layer (35–200 m) which was coincident with an oxygen depletion, down to 20% saturation at 200 m. The concentration of reactive Hg in the North Atlantic Deep Water (0.48–1.34 pM), the Antarctic Intermediate Water (0.47 pM), the Antarctic Bottom Water (0.67–1.25 pM), and the Mediterranean Outflow Water (0.83–1.06 pM) were noted. The trends in Hg concentration in the water masses between stations showed the concentration decreasing with distance from the water mass source except for Hg in the Antarctic Bottom Water. The increase noted in this water mass was attributed to mixing with North Atlantic Deep Water and or release from bottom sediments.  相似文献   

8.
The ventilation of the permanent thermocline in the ocean margin of the mid-latitude eastern North Atlantic Ocean was studied by analysis of a historic data set of over 2200 hydrographic stations. This data set contains physical (pressure, temperature, salinity) and bio-geochemical (dissolved oxygen, silica, nitrate and phosphate) parameters. The large-scale structure of the Eastern North Atlantic Central Water in the permanent thermocline is presented. Conservative tracer distributions are described as are those of the non-conservative tracers like apparent oxygen utilization and dissolved nutrients. The hydrographic structure agrees with ventilation of the thermocline by southward subducted Mode Water from the eastern North Atlantic. Estimates of the oxygen diapycnal diffusion term and the distribution of pre-formed nutrients indicate that diapycnal mixing is not important for the large-scale distribution of bio-geochemical tracers in the thermocline. Only along the west Iberian continental slope may enhanced boundary mixing have some local influence on these tracer distributions. From the observed meridional ageing trend a characteristic southward velocity of −1 cm/s and a total subduction of 4.5 Sv between 32 and 52°N east of 20°W are estimated.  相似文献   

9.
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May–June 1967), PIQUERO (May–June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σθ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through TS diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.  相似文献   

10.
This study of the mixing of Mediterranean Sea Water (MW) with the surrounding waters was made possible by the Semane 2002 cruise (Sortie des Eaux Meditérranéennes dans l'Atlantique Nord-Est) that took place in the Gulf of Cadiz in July 2002. Potential temperature, salinity, oxygen, nutrients and CFC data are used to describe the water masses present in the Gulf. In the southern part of the basin, a water mass characterised by low oxygen, high nutrient and low CFC concentrations occurs along the African continental slope. This water has been identified as the modified Antarctic Intermediate Water (AAIW). It has been previously observed south of this section, at the latitude of the Canary Islands, as a northward flow between the African shelf and the islands. The modified AAIW found in the Gulf of Cadiz is situated at a density of 27.5 kg m−3. Above, at 27.3 kg m−3, the lower limb of the North Atlantic Central Water is observed as a salinity minimum. The modified AAIW enters the Gulf of Cadiz along the south-western part of the continental shelf. It flows cyclonically and exits north-westward. In the northern part of the gulf, due to the presence of the Mediterranean Undercurrent (MU), the AAIW flows off the coast. An optimum multiparameter analysis was conducted to evaluate the influence of the AAIW on the MW northwest of the basin. We show that the AAIW is present in the lower core of the MU at a proportion of 12.9±8.2% and is absent in the upper core.  相似文献   

11.
Within the Central waters of the North Atlantic Ocean there is a significant east–west difference in salinity, similar to that caused by Mediterranean Water at deeper levels. In this paper we hypothesize that the salinity of the Central Water is influenced by the saline Mediterranean Outflow Water, despite physical separation of the two water masses by a salinity minimum over most of the ocean basin. It is suggested that there occurs a cross-isopycnal flux of salinity from the Mediterranean Outflow Water towards the low-density Central Water (detrainment) in the eastern Gulf of Cadiz, not far from the Strait of Gibraltar, where the two water masses are in physical contact. Laboratory experiments, inverse modeling and direct current observations are applied to support the hypothesis.  相似文献   

12.
The recent changes in the thermohaline circulation of the Eastern Mediteranean caused by a transition from a system with a single source of deep water in the Adriatic to one with an additional source in the Aegean are described and assessed in detail. The name Cretan Sea Overflow Water (CSOW) is proposed for the new deep water mass. CSOW is warmer (θ>13.6°C) and more saline (S>38.80) than the previously dominating Eastern Mediterranean Deep Water (EMDW), causing temperatures and salinities to rise towards the bottom. All major water masses of the Eastern Mediterranean, including the Levantine Intermediate Water (LIW), have been strongly affected by the change. The stronger inflow into the bottom layer caused by the discharge of CSOW into the Ionian and Levantine Basins induced compensatory flows further up in the water column, affecting the circulation at intermediate depth. In the northeastern Ionian Sea the saline intermediate layer consisting of Levantine Intermediate Water and Cretan Intermediate Water (CIW) is found to be less pronounced. The layer thickness has been reduced by factor of about two, concurrently with a reduction of the maximum salinity, reducing advection of saline waters into the Adriatic. As a consequence, a salinity decrease is observed in the Adriatic Deep Water. Outside the Aegean the upwelling of mid-depth waters reaches depths shallow enough so that these waters are advected into the Aegean and form a mid-depth salinity-minimum layer. Notable changes have been found in the nutrient distributions. On the basin-scale the nutrient levels in the upper water column have been elevated by the uplifting of nutrient-rich deeper waters. Nutrient-rich water is now found closer to the euphotic zone than previously, which might induce enhanced biological activity. The observed salinity redistribution, i.e. decreasing values in the upper 500–1400 m and increasing values in the bottom layer, suggests that at least part of the transition is due to an internal redistribution of salt. An initiation of the event by a local enhancement of salinity in the Aegean through a strong change in the fresh water flux is conceivable and is supported by observations.  相似文献   

13.
Although the circulation of intermediate water masses in the eastern North Atlantic remains poorly defined, the presence of fresher intermediate waters, the Sub-Artic (SAIW) and the Antarctic Intermediate Water (AAIW), as well the saline intermediate Mediterranean Water (MW), has been tracked using biogeochemical properties. Here we assess the hydrographic and chemical structures of intermediate waters along the western Portuguese margin by examining the vertical distributions and property-property plots of chemical tracers (oxygen and nutrients). AAIW was traced by low oxygen and high nutrients, while SAIW was recognized by low nutrients. The Mediterranean Water (MW) undercurrent is shown to spread towards the eastern flank of Gorringe bank. Concurrently, the fresher waters gained salt by direct incorporation of MW, while this water was enriched in nutrients on its way northward and westward owing, to a great extent, to the entrainment of an AAIW branch. The distributions of nutrients and apparent oxygen utilization are discussed in terms of regional ocean circulation. Our analysis suggests a circulation pattern of the various intermediate waters along the western Portuguese margin: MW extends all over the area, but its presence is more pronounced around cape St. Vincent; SAIW apparently moves southward, reaching the Gorringe bank region, and AAIW flows northward along the coast and around the bank.  相似文献   

14.
The surface and subsurface waters of the Angola and Agulhas Current systems significantly influence the Benguela region and its living resources, and it is probable that the movement of Central Water, which plays a key role in the coastal upwelling process, is controlled by circulation of underlying Antarctic Intermediate Water (AIW) as well as by the dynamics of the overlying subtropical water. The movement of AIW can be inferred from a study of the t-s characteristics, and the data holdings and data base of the South African Data Centre for Oceanography facilitated this investigation. Key findings of the investigation, some confirming earlier theories and hypotheses, are as follows. The mean depth of the AIW core in the South-East Atlantic is 750 m, and in the South-West Indian Ocean, 1 100 m. Agulhas Current AIW, which is modified by Red Sea Water, becomes fresher en route because of entrainment and mixing of water from the south and west. Most of the Agulhas Current AIW per se retroflects east of 18°E. A poleward movement of AIW along the West Coast to around 32°S may be inferred from the salinity and oxygen data, with a freshening en route analogous to the Agulhas Current. Relatively fresh AIW (s < 34,35 × 10?3) is present off the South-Western Cape, the only part of the Benguela where the overlying virgin Central Water upwells. No statistically significant seasonal differences could be resolved.  相似文献   

15.
Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),North Pacific Intermediate Water(NPIW), North Pacific Tropical Intermediate Water(NPTIW) and Antarctic Intermediate Water(AAIW). Around the Lembeh Strait, there exist some north-south differences in terms of water mass properties. NPTIW is only found in the southern Lembeh Strait. Water mass with the salinity of 34.6 is only detected at 200–240 m between NPTW and NPTIW in the southern Lembeh Strait, and results from the process of mixing between the saltier water transported from the South Pacific Ocean and the lighter water from the North Pacific Ocean and Sulawesi Sea. According to the analysis on mixing layer depth, it is indicated that there exists an onshore surface current in the northern Lembeh Strait and the surface current in the Lembeh Strait is southward.These dramatic differences of water masses demonstrate that the less water exchange has been occurred between the north and south of Lembeh Strait. In 2015, the positive wind stress curl covering the northern Lembeh Strait induces the shoaling of thermocline and deepening of NPIW, which show that the north-south difference of airsea system is possible of inducing north-south differences of seawater properties.  相似文献   

16.
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×103 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.  相似文献   

17.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

18.
In July–September 1997 two hydrographic lines were done in the western N. Atlantic along longitudes of 52 and 66°W as part of the WOCE one-time hydrographic survey of the oceans. Each of these two lines approximately repeated earlier ones done during the International Geophysical Year(s) (IGY) and the mid-1980s. Because of this repeated sampling, long-term hydrographic changes in the water masses can be examined. In this report, we focus on temperature and salinity changes within the subtropical gyre mainly between latitudes of 20 and 35°N and compare our results to those presented by Bryden et al. (1996), who examined changes along a zonal line at 24°N, most recently occupied in 1992. Since this most recent 24°N section in 1992, substantial changes have occurred in the western part of the subtropical gyre at the depths of the Labrador Sea Water (LSW). In particular, we see clear evidence for colder, fresher Labrador Sea Water throughout the gyre on our two recent sections that was not yet present in 1992 at similar longitudes along 24°N. At shallower depths inhabited by waters that are an admixture of Mediterranean (MW) and Antarctic Intermediate Waters (AAIW), our recent survey shows an increase in salinity, which can only be attributed to changes in water masses on potential temperature or neutral density surfaces. Furthermore, waters above the MW/AAIW layer and into the deeper part of the main pycnocline have continued to become saltier and warmer throughout the 40-year period spanned by our sections. These latter changes have been dominantly due to a vertical sinking of density surfaces as T/S changes in density surfaces are small, but depths of individual T/S horizons have increased with time. The net change since the IGY shows a mean temperature increase between 800 and 2500 m depth at a rate of 0.57°C/century with a corresponding steric sea level rise of 1 mm/yr, and a net downward heave with small values near the top and bottom, and a maximum rate of −2.7 m/yr at 1800 m depth. Changes in the deep Caribbean indicate a warming since the IGY due to temperature increases of the inflowing source waters in the subtropical gyre at 1800m depth, but no significant change in the deep salinity.  相似文献   

19.
We measured potential temperature, salinity, and dissolved oxygen profiles from the surface to the bottom at two locations in the north Ross Sea (65.2°S, 174.2°E and 67.2°S, 172.7°W) in December 2004. Comparison of our data with previous results from the same region reveals an increase in potential temperature and decreases in salinity and dissolved oxygen concentration in the bottom layer (deeper than 3000 m) over the past four decades. The changes were significantly different from the analytical precisions. Detailed investigation of the temperature, salinity, dissolved oxygen and σ 3 value distributions and the bottom water flow in the north Ross Sea suggests a long-term change in water mass mixing balance. That is to say, it is speculated that the influence of cool, saline, high-oxygen bottom water (high-salinity Ross Sea Bottom Water) formed in the southwestern Ross Sea has possibly been decreased, while the influences of relatively warmer and fresher bottom water (low-salinity Ross Sea Bottom Water) and the Adélie Land Bottom Water coming from the Australia-Antarctic Basin have increased. The possible impact of global warming on ocean circulation needs much more investigation.  相似文献   

20.
A quantitative estimate of the temperature and salinity variations in the Labrador Sea Water (LSW), the Iceland-Scotland Overflow Water (ISOW), and the Denmark Strait Overflow Water (DSOW) is given on the basis of the analysis of repeated observations over a transatlantic section along 60°N in 1997, 2002, 2004, and 2006. The changes distinguished in the research evidence strong warming and salinification in the layers of the Labrador Sea Water and deep waters at the latitude of the section. The maximum increments of the temperature (+0.35°C) and salinity (+0.05 psu) were found in the Irminger Basin in the core of the deep LSW, whose convective renewal in the Labrador Sea stopped in the mid-1990s. The long-term freshening of the ISOW, which started in the mid-1960s, changed in the mid-1990s to a period of intense stable warming and salinification of this water. By 2005, the salinity in the core of the ISOW in the Iceland Basin increased to the values (~34.99 psu) characteristic of the mid-1970s. In 2002, the warming “signal” of the ISOW reached the Irminger Basin. From 1997 to 2006, the warming and salinification of the columns of the Labrador Sea Water and deep waters became as high as 0.2°C and 0.03 psu, respectively. The character of the long-term variations in the thermohaline properties of the LSW and ISOW from the 1950s evidence that these variations were nearly in-phase and correlated with the low-frequency component of the North Atlantic Oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号