首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geochemical and Sm‐Nd isotopic data, and 19 ion‐microprobe U‐Pb zircon dates are reported for gneiss and granite from the eastern part of the Albany‐Fraser Orogen. The orogen is dominated by granitic rocks derived from sources containing both Late Archaean and mantle‐derived components. Four major plutonic episodes have been identified at ca 2630 Ma, 1700–1600 Ma, ca 1300 Ma and ca 1160 Ma. Orthogneiss, largely derived from ca 2630 Ma and 1700–1600 Ma granitic precursors, forms a belt along the southeastern margin of the Yilgarn Craton. These rocks, together with gabbro of the Fraser Complex, were intruded by granitic magmas and metamorphosed in the granulite facies at ca 1300 Ma. They were then rapidly uplifted and transported westward along low‐angle thrust faults over the southeastern margin of the Yilgarn Craton. Between ca 1190 and 1130 Ma, granitic magmas were intruded throughout the eastern part of the orogen. These new data are integrated into a review of the geological evolution of the Albany‐Fraser Orogen and adjacent margin of eastern Antarctica, and possibly related rocks in the Musgrave Complex and Gawler Craton.  相似文献   

2.
The Cerro Bori orthogneisses, crystallized between ca. 800 and 767 Ma, are composed of a sequence of mafic gneisses, with dioritic-gabbroic and dioritic composition tectonically interleaved with a sequence of tonalitic and granodioritic gneisses. These rocks intruded the Chafalote paragneisses (metapelites, semipelites, carbonate and mafic rocks) and they were metamorphosed of high P-T conditions at ca. 676–654 Ma. This paper presents the first major and trace geochemical signatures, as well as Sm and Pb isotopic composition for the Cerro Bori orthogneisses, which allow distinguishing three different groups of rocks. Type I rocks are mafic gneisses with tholeiitic affinity, whereas the Type II rocks are tonalitic and granodioritic gneisses with calc-alkaline affinity. The third type is composed of biotite-rich mafic gneisses with potassic and ultrapotassic affinities. All the three types of rocks have negative ?ND values (between ?2.12 and ?6.67) and old TDM ages (between 1.2 and 2.0 Ga), indicating that the process of crustal assimilation/contamination was an important process, together with fractional crystallization. An continental arc tectonic setting is suggested to this association of rocks between 800 and 767 Ma. This subduction suggests the existence of an ocean between Rio de La Plata and adjacent cratons during the break up of the Rodinia supercontinent.  相似文献   

3.
张熊猫  杨蓉 《江苏地质》2018,42(4):575-583
武关岩体位于北秦岭武关镇,侵入于丹凤岩群之中,为原泥盆系刘岭群北侧解体出来的变质沉积-火山岩系岩体。锆石阴极发光(CL)及LA-ICP-MS同位素测年分析显示,武关岩体中斜长角闪岩锆石U-Pb年龄为(349±10) Ma,该年龄代表岩体的岩浆结晶年龄,即形成年龄。石榴子石黑云斜长片岩中碎屑锆石峰值年龄为850 Ma,最小年龄为324 Ma,反映武关岩群沉积岩的沉积时代应该晚于早古生代。  相似文献   

4.
Chemical and U–Pb isotopic analyses of metaigneous rocks in the northern Oaxacan Complex in southern Mexico indicate that they form part of two granitic–gabbroic suites intruded at 1157–1130 and 1012 Ma, which were metamorphosed under granulite facies conditions between 1004 and 980 Ma. Although the older suite has both within-plate and arc geochemical signatures, the arc characteristics (enrichment of La and Ce relative to Nb, Ta, and Th) are inferred to result from crustal contamination, a conclusion consistent with their negative Nd signatures. The younger suite is spatially associated with anorthosites (from which we were unable to acquire a protolith age), suggesting that collectively it forms part of anorthosite–mangerite–charnockite–granite (AMCG) suites. The tholeiitic nature of the mafic rocks along with the within-plate character of the felsic rocks suggests that they were intruded during extension related to either farfield backarc rifting, rifting above a slab window, or anorogenic intercontinental rifting. Potentially correlative AMCG suites are widespread in Mexico, the Grenville Province of eastern Canada and northeastern USA, and the Andean massifs of Colombia, however, Pb isotopic data most closely resemble those in South America. These data are consistent with published hypotheses that suggest Oaxaquia represents an exotic terrane derived from Amazonia.  相似文献   

5.
The middle segment of the northern margin of the North China Craton (NCC) consists mainly of metamorphosed Archean Dantazi Complex, Paleoproterozoic Hongqiyingzi Complex and unmetamorphosed gabbro-anorthosite-meta-alkaline granite, as well as metamorphosed Late Paleozoic mafic to granitoid rocks in the Damiao-Changshaoying area. The -2.49 Ga Dantazi Complex comprises dioritic-trondhjemitic-granodoritic-monzogranitic gneisses metamorphosed in amphibolite to granulite facies. Petrochemical characteristics reveal that most of the rocks belong to a medium- to high-potassium calc-alkaline series, and display Mg^# less than 40, right-declined REE patterns with no to obviously positive Eu anomalies, evidently negative Th, Nb, Ta and Ti anomalies in primitive mantlenormalized spider diagrams, εNd(t)=+0.65 to -0.03, and depleted mantle model ages TDM=2.78-2.71 Ga. Study in petrogenesis indicates that the rocks were formed from magmatic mixing between mafic magma from the depleted mantle and granitoid magma from partial melting of recycled crustal mafic rocks in a continental margin setting. The 2.44-2.41 Ga Hongqiyingzi Complex is dominated by metamorphic mafic-granodioritic-monzogranitic gneisses, displaying similar petrochemical features to the Dantazi Complex, namely medium to high potassium calc-alkaline series, and the mafic rocks show evident change in LILEs, negative Th, Nb, Ta, Zr anomalies and positive P anomalies. And the other granitiod samples also exhibit negative Th, Nb, Ta, P and Ti anomalies. All rocks in the Hongqiyingzi Complex show right-declined REE patterns without Eu anomaly. The metamorphic mafic rocks with εNd(t) = -1.64 may not be an identical magmatic evolution series with granitoids that have εNd(t) values of +3.19 to +1.94 and TDM ages of 2.55-2.52 Ga. These granitic rocks originated from hybrid between mafic magma from the depleted mantle and magma from partial melting of juvenile crustal mafic rocks in an island arc setting. All the -311 Ma Late Paleozoic metamorphic mafic rocks and related granitic rocks show a medium-potassium calc-alkaline magmatic evolution series, characterized by high Mg^#, obviously negative Th, Nb, Ta anomalies and positive Sr anomalies, from no to strongly negative Ti anomalies and flat REE patterns with εNd(t) = +8.42, implying that the maflc magma was derived from the depleted mantle. However the other granitic rocks are characterized by right-declined REE patterns with no to evidently positive Eu anomalies, significantly low εNd(t) = -13.37 to -14.04, and TDM=1.97-1.96 Ga, revealing that the granitoid magma was derived from hybrid between maflc magma that came from -311 Ma depleted mantle and granitoid magma from Archean to Early Paleoproterozoic ancient crustal recycling. The geochemistry and Nd isotopic characteristics as well as the above geological and geochronological results indicate that the middle segment of the northern margin of the NCC mainly experienced four crustal growth episodes from Archean to Late Paleozoic, which were dominated by three continental marginal arc accretions (-2.49, -2.44 and 311 Ma), except the 1.76-1.68 Ga episode related to post-collisional extension, revealing that the crustal accretion of this segment was chiefly generated from arc accretion and amalgamation to the NCC continental block.  相似文献   

6.
The Anna's Rust Sheet (ARS) and a suite of mineralogically and chemically related intrusions in the core and collar of the Vredefort Dome (in particular, the Vredefort Mafic Complex: VMC) represent a newly recognised type of high Ti gabbro in this central part of the Kaapvaal Craton. This lithology, referred to as the Vredefort Type IV mafic intrusion, is distinguished from chemically similar Type V intrusions (the Karoo dolerites) by the presence of glomeroporphyritic plagioclase and higher Th content and from Type III intrusions (≈ 1600 Ma gabbro) by the lack of cross-cutting pseudotachylitic breccia veinlets. Petrographic features and both major and trace element compositions of all Type IV intrusions are very similar. Based on its Rb-Sr isotope age and character, a gabbroic intrusion from Majuba Colliery (Mpumalanga Province) is also thought to belong to the ARS (Type IV) suite of tholeiitic intrusions. Rb-Sr isotopic analysis resulted in a preferred age of 1052±11 Ma (2ω) for biotite and plagioclase data for ARS, VMC and Majuba samples. The Rb-Sr age for the ARS is further supported by 40Ar-39Ar stepheating ages for plagioclase and pyroxene separates from two ARS and VMC samples, which favour formation of this gabbroic intrusion at ca 1000 Ma ago. These results suggest that an ≈ 120 m thick sheet intrusion may be present throughout a major part of the Vredefort Dome. While Kibaran-age (ca 1–1.2 Ga) alkaline, both mafic and felsic, magmatism, as well as tectonic and hydrothermal activity at that time, have been known in the central Kaapvaal Craton, a widespread tholeiitic magmatic component has now been added to this record. There is a strong likelihood that this magmatic event occurred throughout the southern African subcontinent and perhaps into Antarctica.  相似文献   

7.
8.
The Itapetim Complex is a multiple facies intrusion of porphyritic monzogranite hosting isolated, or swarms of, dioritic enclaves and cut by late dikes of biotite granodiorite. It is a syn-tectonic intrusion in relation to the D3 regional deformation phase of the Brasiliano Orogeny. The complex has contacts with metagreywackes and gneissic granites associated with the Mesoproterozoic Cariris Velhos event and, to the northwest, with a belt of gneisses of Paleoproterozoic ages. At least two different sources seem to be involved in the evolution of the Itapetim Complex. The diorite source appears to be a depleted mantle that underwent some small degree of mixture with a Paleoproterozoic enriched mafic crust. The monzogranite source is probably metagreywacke, a mixture of enriched crust of Paleoproterozoic age and volcanic rocks related to the Cariris Velhos event. The granodiorites were generated by partial melting of a source compositionally similar to those suggested for the monzogranite. U–Pb in zircon gave a crystallization age of 638±4.9 Ma for the porphyritic monzogranites and associated mafic rocks. The granodiorite dikes represent a late magmatic event, under intermediate fO2 conditions. The dikes, intruded into brittle fractures, are probably related to 570 Ma intrusions within the Pajeú Paraı́ba Terrane.  相似文献   

9.
Recent U–Pb age determinations and PT estimates allow us to characterize the different levels of a formerly thickened crust, and provide further constraints on the make up and tectono-thermal evolution of the Grenville Province in the Manicouagan area. An important tectonic element, the Manicouagan Imbricate zone (MIZ), consists of mainly 1.65, 1.48 and 1.17 Ga igneous rocks metamorphosed under 1400–1800 MPa and 800–900 °C at 1.05–1.03 Ga, during the Ottawan episode of the Grenvillian orogenic cycle, coevally with intrusion of gabbro dykes in shear zones. The MIZ has been interpreted as representing thermally weakened deep levels of thickened crust extruded towards the NW over a parautochthonous crustal-scale ramp. Mantle-derived melts are considered as in part responsible for the high metamorphic temperatures that were registered.New data show that mid-crustal levels structurally above the MIZ are represented by the Gabriel Complex of the Berthé terrane, that consists of migmatite with boudins of 1136±15 Ma gabbro and rafts of anatectic metapelite with an inherited monazite age at 1478±30 Ma. These rocks were metamorphosed at about the same time as the MIZ (metamorphic zircon in gabbro: 1046±2 Ma; single grains of monazite in anatectic metapelite: 1053±2 Ma) and under the same T range (800–900 °C) but at lower P conditions (1000–1100 MPa). They are mainly exposed in an antiformal culmination above a high-strain zone, which has tectonic lenses of high PT rocks from the MIZ and is intruded by synmetamorphic gabbroic rocks. This zone is interpreted as part of the hangingwall of the MIZ during extrusion. A gap of 400 MPa in metamorphic pressures between the tectonic lenses and the country rocks, together with the broad similarity in metamorphic ages, are consistent with rapid tectonic transport of the high PT rocks over a ramp prior to the incorporation of the mafic lenses in the hangingwall.Between the antiformal culmination of the Gabriel Complex and the MIZ 1.48 Ga old granulites of the Hart Jaune terrane are exposed. They are intruded by unmetamorphosed 1228±3 Ma gabbro sills and 1166±1 Ma anorthosite. Hart Jaune Terrane represents relatively high crustal levels that truncate the MIZ-Gabriel Complex contact and are preserved in a synformal structure.Farther south, the Gabriel Complex is overlain by the Banded Complex, a composite unit including 1403+32/−25 Ma granodiorite and 1238+16/−13−1202+40/−25 Ma granite. This unit has been metamorphosed under relatively low-P (800 MPa) granulite-facies conditions. Metamorphic U–Pb data, limited to zircon lower intercept ages (971±38 Ma and 996±27 Ma) and a titanite (990±5 Ma) age, are interpreted to postdate the metamorphic peak.The general configuration of units along the section is consistent with extrusion of the MIZ during shortening and, finally, normal displacement along discrete shear zones.  相似文献   

10.
The Neoproterozoic Bossoroca juvenile Volcanic Arc of southernmost Brazil contains arc-related gold deposits. The Bossoroca gold deposit consists of veins and stockworks of quartz-gold ores with minor pyrite, chalcopyrite, galena and tellurides. Carbonate, chlorite, sericite and tourmaline are the main gangue minerals. The ore shoots are contained in calc-alkaline pyroclastic andesites and dacites with minor basalts and epiclastic rocks of the Campestre Formation. SHRIMP U/Pb investigations of zircon show that the island-arc volcanogenic sequence was formed ca 757 m.y. ago in the early Brasiliano Cycle and metamorphosed into transitional greenschist/amphibolite facies of low-pressure regional metamorphism at ca 700 Ma. Nearby, the post-tectonic São Sepé Granite was intruded into the volcanic arc at ca 550 Ma. The mineralising fluids have been related either to metamorphism or to solutions derived from post-tectonic intrusive granites. Lead isotopic analyses, carried out on galena from the gold ore, on feldspar and total rock from the associated volcanic pile, and also on feldspar and total rock from the São Sepé Granite, indicate that gold mineralisation is related to the volcanogenic rocks, and that the deposit should be considered to be of an epizonal orogenic type.  相似文献   

11.
康定杂岩Rb-Sr、Sm-Nd同位素系统及其意义   总被引:1,自引:0,他引:1  
通过对康定—冕宁地区出露的英云闪长岩、黑云角闪斜长片麻岩、角闪变粒岩全岩及其中所分离出的角闪石、黑云母、斜长石、钾长石的Rb-Sr、Sm-Nd同位素的系统测定,结合岩石的锆石U-Pb年龄结果,确定这些变质杂岩由于经历了复杂的形成过程与变质历史,Rb-Sr、Sm-Nd同位素体系难以确定其结晶年龄。由单矿物与全岩Rb-Sr、Sm-Nd体系拟合的~700 M a的等时线年龄反映了角闪岩相-高角闪岩相的变质作用年龄。Sm-Nd同位素体系由于在变质作用过程中的部分开放性,很容易给出无意义的较老的混合年龄。康定杂岩结晶后并没有经历麻粒岩相变质作用,区域上所含的麻粒岩透镜体可能是新元古代(773~721 M a)期间由Rod in ia超大陆裂解产生的新生洋壳向扬子克拉通陆块俯冲消减过程的变质产物。俯冲到一定深度后,由于板片被拉断,软流圈上涌导致变质洋壳板片岩石、先前底侵变质的镁铁质岩石及扬子陆块长英质基底岩石发生部分熔融,以镁铁质岩石熔融产生的熔浆为主(>70%),与长英质基底岩石熔融产生的熔浆混合形成w(Na2O)/w(K2O)>1的TTG组合。  相似文献   

12.
The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high‐temperature, low‐pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850–1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a 207Pb/206Pb SHRIMP age of 1867 ± 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860–1855 Ma, prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer‐parallel D1 foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S2 gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic 207Pb/206Pb age of 1845 ± 4 Ma. The S2 fabric is folded around tight folds and cut by ductile shear zones associated with D3 (ca 1830 Ma), and all pre‐existing structures are folded around large‐scale, open F4 folds (ca 1820 Ma). Construction of a temperature‐time path for the mid‐crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400–500°C for 25–30 million years) encompassing two deformation phases. Protoliths to the Tickalara Metamorphics were relatively cold (~350°C) when intruded by the Fletcher Creek Granite at ca 1850 Ma, but were subsequently heated rapidly to 700–800°C during peak metamorphism at ca 1845 Ma. Repeated injection of mafic magmas caused multiple remelting of the metasedimentary wall rocks, with mappable increases in leucosome volume that show a strong spatial relationship to these intrusives. This mafic igneous activity prolonged the elevated geotherm and ensured that the rocks remained very hot (≥650°C) for at least 10 million years. The Mabel Downs Tonalite was emplaced during amphibolite facies metamorphism, with intrusion commencing at ca 1835 Ma. Its compositional heterogeneity, and the presence of mutual cross‐cutting relations between ductile shear zones and multiple injections of mingled magma suggest that it was emplaced syn‐D3. Broad‐scale folding attributable to F4 was accompanied by widespread intrusion of granitoids, and F4 fold limbs are truncated by large, mostly brittle retrograde S4 shear zones.  相似文献   

13.
Geological observations and petrological and geochemical criteria are used to detect hybrid rocks at the endocontact of a dolerite dike. The hybrid rocks were produced when the material of a mafic intrusion mixed with a felsic melt. The latter was produced by the melting of the metamorphic rocks making up the Goloustnaya basement inlier of the Siberian craton, under the thermal effect of the intruded dike. Two age groups of zircon have been identified in the hybrid rock by SHRIMP analysis. The Paleoproterozoic age of inherited zircon (1902, 1864, 1859, and 1855 Ma) reflects the contribution of ancient sources to the hybrid-rock composition. The young, primary-magmatic, zircon grains, produced by melting at the endocontact of the mafic intrusion (494 ± 5 Ma), are coeval with the hybrid rocks, and their age indicates when the mafic rocks intruded the metamorphic framework. Dikes of close age, with similar geochemical characteristics, are present on the vast southern margin of the Siberian craton—from Goloustnaya to Biryusa salients.  相似文献   

14.
The Sesia magmatic system of northwest Italy allows direct study of the links between silicic plutonism and volcanism in the upper crust and the coeval interaction of mafic intrusions with the deep crust. In this paper, we focus on the chemical stratigraphy of the pre-intrusion crust, which can be inferred from the compositions of crustal-contaminated mafic plutonic rocks, restitic crustal material incorporated by the complex, and granitic rocks crystallized from anatectic melts. These data sources independently indicate that the crust was compositionally stratified prior to the intrusion of an 8-km-thick gabbroic to dioritic body known as the Mafic Complex, with mica and K-feldspar abundance decreasing with depth and increasing metamorphic grade. Reconsideration of published zircon age data suggest that the igneous evolution initiated with sporadic pulses at around 295 Ma, when mafic sills intruded deep granulites which provided a minor amount of depleted crustal contaminant, very poor in LIL elements. With accelerated rates of the intrusion, between 292 and 286 m.y, mafic magmas invaded significantly more fertile, amphibolite-facies paragneisses, resulting in increased contamination and generating hybrid rocks with distinct chemistry. At this point, increased anatexis produced a large amount of silicic hybrid melts that fed the incremental growth of upper-crustal plutons and volcanic activity, while the disaggregated restite was largely assimilated once ingested by the growing Mafic Complex. This “igneous climax” was coincident with an increasing rate of intrusion, when the upper Mafic Complex began growing according to the “gabbro glacier” model and, at about the same time, volcanic activity initiated. Cooling lasted millions of years. In the coupled magmatic evolution of the deep and upper crust, the Mafic Complex should be considered more as a large reservoir of heat rather than a source of upper-crustal magma, while the fertility of “under/intra-plated” crust plays a crucial role in governing the generation of large volumes of continental silicic magmas.  相似文献   

15.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone.  相似文献   

16.
Detrital zircon from the Carboniferous Girrakool Beds in the central Tablelands Complex of the southern New England Orogen, Australia, is dominated by ca 350–320 Ma grains with a peak at ca 330 Ma; there are very few Proterozoic or Archean grains. A maximum deposition age for the Girrakool Beds of ca 309 Ma is identified. These data overlap the age of the Carboniferous Keepit arc, a continental volcanic arc along the western margin of the Tamworth Belt. Zircon trace-element and isotopic compositions support petrographic evidence of a volcanic arc provenance for sedimentary and metasedimentary rocks of the central Tablelands Complex. Zircon Hf isotope data for ca 350–320 Ma detrital grains become less radiogenic over the 30 million-year record. This pattern is observed with maturation of continental volcanic arcs but is opposite to the longer-term pattern documented in extensional accretionary orogens, such as the New England Orogen. Volcanic activity in the Keepit arc is inferred to decrease rapidly at ca 320 Ma, based on a major change in the detrital zircon age distribution. Although subduction continues, this decrease is inferred to coincide with the onset of trench retreat, slab rollback and the eastward migration of the magmatic arc that led to the Late Carboniferous to early Permian period of extension, S-type granite production and intrusion into the forearc basin, high-temperature–low-pressure metamorphism, and development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

17.
Mesoproterozoic metaplutonic rocks in northern Cape Breton Island,Nova Scotia, occur in a tectonic inlier within the Appalachianorogen. Although they have been multiply metamorphosed and variablydeformed, the petrology and geochemistry of these rocks provideinsight into the tectonomagmatic evolution of easternmost Laurentia.Anorthosite, syenite, and granitoid plutons (1100–980Ma) intruded the Sailor Brook and Polletts Cove River gneisses.New Nd isotopic data are presented from a biotite-rich partof the Sailor Brook gneiss (  相似文献   

18.
冯光英  刘燊  牛晓露  杨经绥 《地球科学》2018,43(4):1293-1306
双凤山基性侵入岩体位于松嫩-张广才岭地块南缘,其岩石组成主要为橄榄辉长岩.锆石LA-ICP-MS U-Pb定年显示该岩体形成于279±4 Ma.岩石矿物组成主要为橄榄石、单斜辉石、斜方辉石、高An值(80.1~87.9)斜长石以及以反应边形式存在的角闪石,矿物学特征指示其母岩浆为经历过充分流体交代的富水岩浆.全岩主微量元素组成揭示其源区物质组成为石榴子石二辉橄榄岩,部分熔融程度约20%,岩浆演化过程中经历了斜长石堆晶作用以及斜方辉石的结晶分异作用.全岩Sr-Nd同位素及锆石Hf同位素研究显示其(87Sr/86Sr)i=0.705 2~0.706 1,并具有正的εNd(t)值(0.9~1.3)和εHf(t)值(0~10.2),表明其来源于亏损的地幔源区,并且岩浆上升过程中没有经历明显的地壳混染.微量元素和同位素特征综合反映岩浆源区经历了古亚洲洋俯冲沉积物熔体和流体交代作用的改造,但起主导作用的是流体.其地球化学特征总体显示MORB以及弧型玄武岩过渡的特征,暗示其形成于弧后伸展环境.研究区基性侵入岩地幔源区的不均一性主要受到古亚洲洋多期次俯冲作用析出熔/流体对上覆地幔楔不同程度的改造.   相似文献   

19.
三宫岩体是近几年新发现的铜镍矿化镁铁-超镁铁岩体,位于哈尔里克山东段。岩石类型主要为辉长岩、斜长辉石岩和含长橄榄辉石岩,局部有零星铜镍矿化。锆石U-Pb谐和年龄为(281.7±2.6)Ma,表明岩体形成于早二叠世。样品MgO与FeO~T呈正相关关系,与CaO、SiO_2和Al_2O_3之间呈负相关关系,岩体主量元素成分主要受橄榄石和单斜辉石含量的控制;样品明显富集轻稀土元素(La/Yb)N=5.02~7.04,重稀土元素之间具有明显的分馏(Gd/Yb)N=2.36~2.87,δEu为0.98~1.09多具弱的正铕异常,富集大离子亲石元素(Cs、Sr、Ba),相对亏损高场强元素,具明显的Nb、Ta、Ti负异常。Sr-Nd同位素模拟计算表明母岩浆上升过程中遭受了约10%的下地壳物质混染。岩浆源区遭受了明显的熔体交代作用,部分熔融主要发生在石榴子石稳定域。综合区域构造演化历史认为三宫岩体形成于后碰撞伸展环境,该岩体的发现初步表明哈尔里克地区也具有寻找早二叠世铜镍矿的潜力。  相似文献   

20.

Granulite facies rocks on Else Platform in the northern Prince Charles Mountains, east Antarctica, consist of metasedimentary gneiss extensively intruded by granitic rocks. The dominant rock type is a layered garnetbiotite‐bearing gneiss intercalated with minor garnet‐cordierite‐sillimanite gneiss and calc‐silicate. Voluminous megacrystic granite intruded early during a mid‐Proterozoic (ca 1000 Ma) granulite event, M1, widely recognized in east Antarctica. Peak metamorphic conditions for M1 are in the range of 650–750 MPa at ~800°C and were associated with the development of a gneissic foliation, S1 and steep east‐plunging lineation, L1. Strain partitioning during progressive non‐coaxial deformation formed large D2 granulite facies south‐dipping thrusts, with a steep, east‐plunging lineation. In areas of lower D2 strain, large‐scale upright, steep east‐plunging fold structures formed synchronously with the D2 high‐strain zones. Voluminous garnet‐bearing leucogneiss intruded at 940 ±20 Ma and was deformed in the D2 high‐strain zones. Textural relationships in pelitic rocks show that peak‐M2 assemblages formed during increasing temperatures via reactions such as biotite + sillimanite + quartz ± plagioclase = spinel + cordierite + ilmenite + K‐feldspar + melt. In biotite‐absent rocks, re‐equilibration of deformed M1 garnet‐sillimanite‐ilmenite assemblages occurred through decompressive reactions of the form, garnet + sillimanite + ilmenite = cordierite + spinel + quartz. Pressure/temperature estimates indicate that peak‐M2 conditions were 500–600 MPa and 700±50°C. At about 500 Ma, north‐trending granitic dykes intruded and were deformed during D3‐M3 at probable upper amphibolite facies conditions. Cooling from peak D3‐M3 conditions was associated with the formation of narrow greenschist facies shear zones, and the intrusion of pegmatite. Cross‐cutting all features are abundant north‐south trending alkaline mafic dykes that were emplaced over the interval ca 310–145 Ma, reflecting prolonged intrusive activity. Some of the dykes are associated with steeply dipping faults that may be related to basin formation during Permian times and later extension, synchronous with the formation of the Lambert Graben in the Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号