首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northeastern extremity of the East-Asian Rift Belt is designated as the Priokhotsky Rift, comprising the broadly north–south Torom (750 × 100 km) and Nizhneamursky (450 × 100 km) open faults formed by a system of northeast striking grabens associated with the closure of the Tan-Lu shear system and north–south striking grabens formed in a setting of oblique extension. Infilling of the grabens corresponding to the rift stage proper is the Eocene?Miocene coal-bearing molasse; the fields of the Miocene basalts are also related to it. The grabens of the rift belt are overlain by the Pliocene–Neopleistocene associations of rift basins in the forming plate cover of the Alpine platform.  相似文献   

2.
This study aims at showing how far pre-existing crustal weaknesses left behind by Proterozoic mobile belts, that pass around cratonic Archean shields (Tanzania Craton to the southeast and Congo Craton to the northwest), control the geometry of the Albertine Rift. Focus is laid on the development of the Lake Albert and Lake Edward/George sub-segments and between them the greatly uplifted Rwenzori Mountains, a horst block located within the rift and whose highest peak rises to >5000 m above mean sea level. In particular we study how the southward propagating Lake Albert sub-segment to the north interacts with the northward propagating Lake Edward/George sub-segment south of it, and how this interaction produces the structures and geometry observed in this section of the western branch of the East African Rift, especially within and around the Rwenzori horst. We simulate behaviour of the upper crust by conducting sandbox analogue experiments in which pre-cut rubber strips of varying overstep/overlap connected to a basal sheet and oriented oblique and/or orthogonal to the extension vector, are placed below the sand-pack. The points of connection present velocity discontinuities to localise deformation, while the rubber strips represent ductile domain affected by older mobile belts. From fault geometry of developing rift segments in plan view and section cuts, we study kinematics resulting from a given set of boundary conditions, and results are compared with the natural scenario. Three different basal model-configurations are used to simulate two parallel rifts that propagate towards each other and interact. Wider overstep (model SbR3) produces an oblique transfer zone with deep grabens (max. 7.0 km) in the adjoining segments. Smaller overlap (model SbR4) ends in offset rift segments without oblique transfer faults to join the two, and produces moderately deep grabens (max. 4.6 km). When overlap doubles the overstep (model SbR5), rifts propagate sub-orthogonal to the extension direction and form shallow valleys (max. 2.9 km). Relative ratios of overlap/overstep between rift segments dictate the kind of transition zone that develops and whether or not a block (like the Rwenzoris) is captured and rotates; hence determining the end-member geometry. Rotation direction is controlled by pre-existing fabrics. Fault orientation, fault kinematics, and block rotation (once in play) reinforce each other; and depending on the local kinematics, different parts of a captured block may rotate with variable velocities but in the same general direction. Mechanical strength anisotropy of pre-structured crust only initially centres fault nucleation and propagation parallel to the grain of weakness of the basement, but at later stages of a protracted period of crustal extension, such boundaries are locally defied.  相似文献   

3.
In the Paleozoic basement of the southeast Oujda mountains, the Lower Ordovician, Silurian-Devonian and Devonian-Dinantian are dated for the first time through palynology. This paper shows the autochtonous character and continuous stratigraphy of the formations of the Lower Ordovician to Devonian or probably Dinantian. The Intra-Visean Olistostrome is interpreted as a tectono-sedimentary breccia associated with strike-slip faults. The structural Variscan evolution is characterized by two major phases, each of them being divided in three stages. The ante-Upper Visean early phase is characterized in chronological order by (1) submeridian folds, (2) northeast-southwest folds and (3) extensional, oblique-slip, east-west trending faults. The second phase post-dates the Westphalian C and is marked by open east-northeast - west-southwest trending folds cut by reverse faults with the same trend and by a set of north-south sinistral and east-west dextral strike-slip faults. These later faults have allowed the emplacement of late Hercynian granitoïds.A palaeogeographical and structural reconstruction comparable to that established in the rest of the Moroccan Meseta is proposed.  相似文献   

4.
基于"同一应力场不同边界条件形成不同性质断层"的构造解析原理,认为海拉尔盆地断陷期受南南东—北北西向拉张应力场作用,形成北北东和北东东向断裂,北北西向断裂明显走滑变形。断-坳转化期拉张应力场方位调整为近东西向,形成近南北向断裂,北北东、北东东和北北西向断裂扭动变形。伊敏组沉积末期盆地回返,受近东西向挤压应力场控制盆地左旋压扭变形,北北东和北东东向断裂强烈反转。依据断裂变形特征叠加关系,海拉尔盆地形成4套断裂系统:早期伸展断裂、中期张扭断裂、早期伸展中期张扭断裂和早期伸展中期张扭晚期反转断裂。断陷构造层早期伸展中期张扭反向断裂形成断层遮挡圈闭,早期伸展断裂将凹中隆和斜坡切割破碎形成断层复杂化的背斜圈闭,早期伸展断裂与中期张扭断裂交叉组合,形成复杂的断块圈闭。断-坳构造层早期伸展中期张扭晚期反转断裂呈"梳状"组合,形成典型的断块圈闭。基于断裂活动时期与成藏期耦合关系以及典型油气藏解剖的结果认为,早期伸展和早期伸展中期张扭断裂在成藏关键时刻为遮挡断层,且封闭的烃柱高度一般均小于圈闭的幅度,早期伸展中期张扭晚期反转断裂为调整型断层。基于圈闭的样式、断层在成藏中的作用及输导体系分析,海拉尔盆地断裂控藏模式分为二型4类,二型为原生油藏和次生油藏。原生油藏包括3类:一是灶缘油气侧向运移反向断层遮挡成藏模式,控藏断裂为早期伸展中期张扭断裂系统;二是灶内油气初次运移断层遮挡"箱内"成藏模式;三是灶内凹中隆油气侧向运移"弥散式"成藏模式。这两种模式控藏断裂均为早期伸展断裂。次生油藏为油气沿断裂垂向运移"伞式"成藏模式,控藏断裂为早期伸展中期张扭晚期反转断裂系统。  相似文献   

5.
In this contribution, we present a new model of passive rifting and related rift-flank uplift. The numerical model is based on a lattice spring network coupled with a viscous particle model so that we can simulate visco-elasto-plastic behaviour with dynamic fault development. In our model, we show that rift-flank uplift can be achieved best when extension in the crust is localized and the lower crust is strong so that major rift faults transect the whole crust. Uplift of rift flanks follows a smooth function whereas down-throw in the rift basin takes place in steps. The geometry of the developing faults has also an influence on the uplift; in this case, displacement along major rift faults produces higher flanks than distributed displacement on many faults. Our model also shows that the relative elastic thickness of the crust has only a minor influence on the uplift since fault depth and elastic thickness are not independent. In addition, we show with a second set of simulations and analytically that a strain misfit between the upper and lower boundaries of a stretched crust, which is created by the horizontal extension, leads to an active uplift driven by elastic forces. We compare the numerical simulations, the analytical solution and real surface data from the Albertine rift in the East African Rift System and show that our new model can reproduce realistic features. Our two-layer beam model with strain misfit can also explain why a thick crust in the simulations can have an even higher rift flank than a thin crust even though the thin crust topography has a higher curvature. We discuss the implications of our simulations for real rift systems and for the current theory of rift-flank uplift.  相似文献   

6.
In this paper we assess two competing tectonic models for the development of the Isa Superbasin (ca 1725–1590 Ma) in the Western Fold Belt of the Mt Isa terrane. In the ‘episodic rift‐sag’ tectonic model the basin architecture is envisaged as similar to that of a Basin and Range province characterised by widespread half‐graben development. According to this model, the Isa Superbasin evolved during three stages of the Mt Isa Rift Event. Stage I involved intracontinental extension, half‐graben development, the emergence of fault scarps and tilt‐blocks, and bimodal volcanism. Stage II involved episodic rifting and sag during intervening periods of tectonic quiescence. Stage III was dominated by thermal relaxation of the lithosphere with transient episodes of extension. Sedimentation was controlled by the development of arrays of half‐grabens bounded by intrabasinal transverse or transfer faults. The competing ‘strike‐slip’ model was developed for the Gun Supersequence stratigraphic interval of the Isa Superbasin (during stage II and the beginning of stage III). According to this model, sinistral movements along north‐northeast‐orientated strike‐slip faults took place, with oblique movements along northwest‐orientated faults. This resulted in the deposition of southeast‐thickening ramp sequences with local sub‐basin depocentres forming to the west and north of north‐northeast‐ and northwest‐trending faults, respectively. It is proposed that dilation zones focused magmatism (e.g. Sybella Granite) and transfer of strike‐slip movement resulted in transient uplift along the western margin of the Mt Gordon Arch. Our analysis supports the ‘episodic rift‐sag’ model. We find that the inferred architecture for the strike‐slip model correlates poorly with the observed structural elements. Interpretation is made difficult because there has been significant modification and reorientation of fault geometry during the Isan Orogeny and these effects need to be removed before any assertion as to the basin structure is made. Strike‐slip faulting does not explain the regional‐scale pattern of basin subsidence. The ‘episodic rift‐sag’ model explains the macroscopic geometry of the Isa Superbasin and is consistent with the detailed sedimentological analysis of basin facies architecture, and the structural history and geometry.  相似文献   

7.
Northwestern Argentina was the site of the continental Salta rift in Cretaceous to Paleogene time. The Salta rift had a complex geometry with several subbasins of different trends and subsidence patterns surrounding a central high. Fault trends in the rift were extremely variable. There is evidence of normal and/or transfer faults trending N, NE, E and SE. It is not clear if all these faults were active at the same time, indicating a poorly defined extension direction, or if they formed in different, non-coaxial extension phases. In either case, their trends were very likely influenced by preexisting fault systems. Beginning in early Eocene time, the rift basins were superseded by Andean foreland basins and later became caught in the Andean thrust deformation propagating eastward, resulting in the inversion of rift faults. Due to their different orientations, not all faults were equally prone to reactivation as thrusts. N to NNE trending faults were apparently most strongly inverted, probably often to a degree where the traces of their normal fault origin have become obliterated. We present seismic evidence of moderately inverted N trending faults in the Tres Cruces basin and field examples of preserved E trending normal faults. However, reactivation sometimes also affects faults trending approximately parallel to the main Neogene shortening direction, indicating short-term deviations from the general pattern of Neogene thrust deformation. These pulses of orogen-parallel contraction may be linked to the intermittent activity of oblique transfer zones.  相似文献   

8.
《Comptes Rendus Geoscience》2015,347(4):191-200
The Levant Rift system is a linear assemblage of rifts and their mountainous flanks that comprise three structural distinct sections. The southern Jordan Rift is built of series of secondary axial grabens that diminish in length northwards and are separated from each other by poorly rifted threshold zones. The central section of the rift system is the Lebanese Baqa’a embedded between mountainous flanks, and a splay of faults that scatter to the north-northeast; the northern section comprises the SW-trending Karasu–Hatay Rifts from which the Ghab graben branches southwards. It is suggested that the rifting of the Jordan Rift is the northern extension of the Red Sea continental break-up, while the Karasu–Tatay section correlates geodynamically with the migration of Anatolia westwards. The Baqa’a, its mountainous flanks and the fault splay mark the termination of the crustal break-up from the south, but rejuvenation of some faults indicate the effects of the Anatolian migration.  相似文献   

9.
Structural studies of the Barmer Basin in Rajasthan, northwest India, demonstrate the important effect that pre-existing faults can have on the geometries of evolving fault systems at both the outcrop and basin-scale. Outcrop exposures on opposing rift margins reveal two distinct, non-coaxial extensional events. On the eastern rift margin northwest–southeast extension was accommodated on southwest- and west-striking faults that form a complex, zig-zag fault network. On the western rift margin northeast–southwest extension was accommodated on northwest-striking faults that form classical extensional geometries.Combining these outcrop studies with subsurface interpretations demonstrates that northwest–southeast extension preceded northeast–southwest extension. Structures active during the early, previously unrecognised extensional event were variably incorporated into the evolving fault systems during the second. In the study area, an inherited rift-oblique fault transferred extension from the rift margin to a mid-rift fault, rather than linking rift margin fault systems directly. The resultant rift margin accommodation structure has important implications for early sediment routing and depocentre evolution, as well as wider reaching implications for the evolution of the rift basin and West Indian Rift System. The discovery of early rifting in the Barmer Basin supports that extension along the West Indian Rift System was long-lived, multi-event, and likely resulted from far-field plate reorganisations.  相似文献   

10.
松辽盆地继承性断裂带特征及其在油气聚集中的作用   总被引:12,自引:4,他引:12  
松辽盆地沉积盖层发育三套断裂组合,即张性断块构造断裂组合、张性断块构造-滑脱型正断层组合断裂组合、扭动断裂组合。三套断裂组合主干断层具有继承发育特点,形成继承性发育断裂带。这些断裂带不仅控制了深部构造格局、中浅层沉积体系的发育与展布以及盖层的构造变形,而且对盆地油气系统中油气运移、聚集与保存发挥着重要作用,因此继承性发育断裂带周围是盆地油气的主要聚集区带。  相似文献   

11.
We present a series of high-resolution seismic reflection lines across the Yizre'el valley, which is the largest active depression in Israel, off the main trend of the Dead Sea rift. The new seismic reflection data is of excellent quality and shows that the valley is dissected into numerous small blocks, separated by active faults. The Yizre'el valley is found to consist of a series of half grabens, rather than a single half graben, or a symmetrical graben. The faults are generally vertical and appear to have a dominant strike-slip component, but some dip-slip is also evident. A marked zone of compression near Megido is associated with the intersection of the two largest faults in the valley, the Carmel fault and the Gideon fault. Variable trend of the faults reflects the complexity of the local geology along the boundary between the wide NW–SE trending Farah–Carmel fault zone and the E–W trending basins and ranges in the Lower Galilee. This tectonic complexity is likely to result from a highly variable stress pattern, modified by the structures inside it. Normal faulting in the valley occurred at an early stage of its development as a tectonic depression. However, strike-slip motion on the Carmel fault, and possibly also on some of the other faults, appears to have started together with the onset of normal faulting. Earthquake hazard in the area appears to be uniform as faults are distributed throughout the Yizre'el valley.  相似文献   

12.
在对太原掀斜构造形迹分析的基础上,通过节理统计,以板块构造和大陆动力学理论为基础,研究了古构造应力场特征和构造演化历程。结果表明:太原掀斜构造由东山背斜、西山向斜和太原断陷组成。中生代以来的构造演化可分为中生代晚期、古近纪及新生代晚期三个阶段。主体构造,即东山背斜、西山向斜以及相伴生的南北向褶曲等都是在中生代晚期北东—南西向右旋力偶作用下形成。区内等距分布的北东东向至东西向的正断层组等次级构造及太原断陷的雏形形成于古近纪北东—南西向左旋力偶。在新生代晚期北西—南东向拉张应力作用下,太原断陷进一步拉张下陷,形成现今构造格局。不同时期应力场和板块构造动力系统不尽相同,但它们之间有继承的特点,其形成演化与区域大陆动力学条件转化和演化一致。  相似文献   

13.
内蒙古狼山地区断裂构造十分复杂,主要发育有南北、东西、北东和北西走向的断裂构造.从南北向断裂的几何形态、运动性质、构造应力场特征入手进行研究,结合野外实地调查与测量,运用极射赤平投影方法,求出构造应力场的主应力轴方位,进而对本区的构造演化进行了探讨.初步认为,研究区发育的近南北向断裂至少受到过两期构造应力场的作用,第一期是在晚二叠世,由于华北克拉通向北、西伯利亚板块向南活动而形成碰撞拼贴运动所产生的近南北向近水平挤压构造应力场,此时构造应力场的主应力轴σ1为北偏东10°左右,向北倾伏,倾伏角为15°~20°.在这一期构造应力场的作用下,狼山地区发育了一套破裂系统,它们分别表现为近东西走向的挤压构造带和逆断层、近北东走向的以左行为主的走滑断层、近北西走向的以右行为主的走滑断层以及近南北走向的张性断层.这些早期的断裂系统也制约着该区域后来的构造活动,第二期构造应力场是侏罗纪以来古太平洋板块向亚洲大陆俯冲而产生的.此构造应力场的主应力轴σ1为北西-南东向,倾伏向为150°左右,倾伏角为10°~20°.第二期构造应力场的作用,使早期南北向断裂由原来的张性破裂面转为左行走滑,早期东西向断裂转为右行走滑,早期北东向左行滑动面转为压性面和褶皱轴方向,而早期的北西向破裂面则转为张性破裂性质.   相似文献   

14.
The Buchan Rift, in northeastern Victoria, is a north–south-trending basin, which formed in response to east–west crustal extension in the Early Devonian. The rift is filled mostly with Lower Devonian volcanic and volcaniclastic rock of the Snowy River Volcanics. Although the structure and geometry of the Buchan Rift and its major bounding faults are well mapped at the surface, a discrepancy exists between the surface distribution of the thickest rift fill and its expected potential field response. To investigate this variation, two new detailed land-based gravity surveys, which span the rift and surrounding basement rocks in an east–west orientation, have been acquired and integrated with pre-existing government data. Qualitative interpretation of the observed magnetic data suggests the highly magnetic rocks of the Snowy River Volcanics have a wider extent at depth than can be mapped at the surface. Forward modelling of both land-based gravity data and aeromagnetic data supports this interpretation. With the Snowy River Volcanics largely confined within the Buchan Rift, resolved geometries also allow for the interpretation of rift boundaries that are wider at depth. These geometries are unusual. Unlike typical basin inversions that involve reactivation of rift-dipping faults, the bounding faults of the Buchan Rift dip away from the rift axis and thus appear unrelated to the preceding rifting episode. Limited inversion of previous extensional rift faults to deform the rift-fill sequences (e.g. Buchan Synclinorium) appears to have been followed by the initiation of new reverse faults in outboard positions, possibly because the relatively strong igneous rift fill began to act as a rigid basement ramp during continued E–W crustal shortening in the Middle Devonian Tabberabberan Orogeny. Overthrusting of the rift margins by older sediments and granite intrusions of the adjacent Tabberabbera and Kuark zones narrowed the exposed rift width at surface. This scenario may help explain the steep-sided geometries and geophysical expressions of other rift basins in the Tasmanides and elsewhere, particularly where relatively mechanically strong basin fill is known or suspected.  相似文献   

15.
North‐northwest normal faults intersect ENE normal faults in the vicinity of Querétaro City, in central México, affecting the Miocene–Pliocene northern‐central sector of the Mexican Volcanic Belt province. This intersection produced an orthogonal arrangement of grabens, half‐grabens and horsts that include the Querétaro graben. The NNW faults are part of the Taxco–San Miguel de Allende fault system, which is proposed here as part of the southernmost Basin and Range province in México. The ENE to E–W faults are part of the E–W oriented Chapala–Tula fault zone, which has been interpreted as an active intra‐arc fault system of the Mexican Volcanic Belt. Seventy‐four normal faults were mapped, of which the NNW faults are the largest and have the best morphological expression in the region. More numerous, although shorter, are the ENE faults. Total length of the ENE faults is greater than the total length of the NNW faults. Both sets are dominantly normal faults, indicating ENE extension for the NNW set and NNW extension for the ENE set. Field data indicate that displacement on the two fault sets has overlapped in time, as some NNW faults are younger than some ENE faults, which are supposed to be the younger ones. Seismicity in 1998 on a NNW fault indicates ENE active extension on the NNW faults. These observations support our interpretation that the northern Mexican Volcanic Belt lies on the boundary between the Basin and Range province, which is undergoing ENE extension, and the central Mexican Volcanic Belt province, which is undergoing northerly extension. The apparent overlap in space and time of displacements on the two fault sets reflects the difference in stress regime between the two provinces. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The Mt Isa Rift Event is a Palaeoproterozoic intracontinental extension event that defines the beginning of sedimentation into the Isa Superbasin in the Western Fold Belt, Mt Isa terrane. In the mildly deformed Fiery Creek Dome region, on the northwest flanks of the Mt Isa Rift, elements of the Mt Isa Rift Event rift architecture are preserved without being intensely overprinted by later deformation. In this region two discrete generations of northwest‐dipping normal faults have been identified. Early generation normal faults were active during the deposition of fluvial and immature conglomerate and sandstone of the Bigie Formation. Renewed rifting and the development of late‐generation normal faults occurred during deposition of shallow‐marine sandstone and siltstone of the lower Gunpowder Creek Formation. Differential uplift between tilt blocks formed an array of spatially and temporally discontinuous synrift unconformities on the crests of uplifted tilt blocks. Applying the domino model yields ~28% crustal extension for the entire Mt Isa Rift Event. Northwest‐striking transverse faults facilitated differential displacement along normal faults and formed boundaries to normal fault segments, creating smaller depositional compartments along half‐graben axes. Three large domes were formed during laccolith emplacement. These domes produced palaeogeographical highs that divided the region into sub‐basins and were a source for the coarse fluvial synrift sequences deposited during the early Mt Isa Rift Event. The basin architecture in the Fiery Creek Dome region is consistent with northwest‐southeast‐directed extension.  相似文献   

17.
J. V. Smith  S. Yamauchi 《Tectonophysics》1994,230(3-4):143-150
The southwestern Japan Sea and the margin of southwestern Japan feature parallel elongate extensional sub-basins and grabens. These structures are oblique to the trend of southwestern Japan and are interpreted as the remnant of an en-echelon array. Such a right-stepping remnant en-echelon pattern indicates sinistral rifting of the southwestern Japan block from Asia. The major extensional fault trends are parallel over a distance of 600 km. Infinitesimal kinematic relations show that it is unlikely that these faults initiated in response to rotation about the nearby pole determined from paleomagnetic studies. Rather, an earlier stage of rifting about a distant pole is indicated. The rotational pole of this early rifting was probably located at least 6000 km away from the rift and the pole of rotation was offset from the rift trend by a similar distance. Rifting about this distant rotational pole loosened the southwestern Japan continental block from the Asian mainland making it susceptible to a large rotation about a nearby pole.  相似文献   

18.
Four major fault systems oriented N–S to NNE–SSW, NE–SW, E–W and NW–SE are identified from Landsat Thematic Mapper (TM) images and a high resolution digital elevation model (DEM) over the Ethiopian Rift Valley and the surrounding plateaus. Most of these faults are the result of Cenozoic - extensional reactivation of pre-existing basement structures. These faults interacted with each other at different geological times under different geodynamic conditions. The Cenozoic interaction under an extensional tectonic regime is the major cause of the actual volcano-tectonic landscape in Ethiopia. The Wonji Fault Belt (WFB), which comprises the N–S to NNE–SSW striking rift floor faults, displays peculiar propagation patterns mainly due to interaction with the other fault systems and the influence of underlying basement structures. The commonly observed patterns are: curvilinear oblique-slip faults forming lip-horsts, sinusoidal faults, intersecting faults and locally splaying faults at their ends. Fault-related open structures such as tail-cracks, releasing bends and extensional relay zones and fault intersections have served as principal eruption sites for monogenetic Plio-Quaternary volcanoes in the Main Ethiopian Rift (MER).  相似文献   

19.
中古8井区断裂与鹰山组岩溶储层成因关系   总被引:1,自引:1,他引:0  
塔里木盆地奥陶系碳酸盐岩地层中蕴藏丰富的油气资源,多期次不同类型岩溶作用叠加改造是形成塔中古岩溶储层的主要动因,断裂是影响岩溶储层发育的重要因素。中古8井区加里东期发育北西-南东逆冲断裂带,海西期发育北东-南西向走滑断裂带,组成网状断裂系统。岩溶储层发育于鹰山组顶面0~120 m深度范围内,类型细分为:孔洞型、洞穴型、裂缝型和裂缝—孔洞型4种,以裂缝-孔洞型和孔洞型为主。加里东至海西期多期、多组断裂及伴生的裂缝网状系统形成良好的流体运移通道,促进缝洞系统的形成与埋藏溶蚀作用及内幕白云岩化的发生,改善了储层的储集性能,形成碳酸盐岩孔-洞-缝复合型储集体。   相似文献   

20.
With oblique rifting, both extension perpendicular to the rift trend and shear parallel to the rift trend contribute to rift formation. The relative amounts of extension and shear depend on α, the acute angle between the rift trend and the relative displacement direction between opposite sides of the rift. Analytical and experimental (clay) models of combined extension and left-lateral shear suggest the fault patterns produced by oblique rifting. If α is less than 30°, conjugate sets of steeply dipping strike-slip faults form in rifts. Sinistral and dextral strike-slip faults trend subparallel and at large angles to the rift trend, respectively. If α is about 30°, strike-slip, oblique-slip and/or normal faults form in rifts. Faults with sinistral and dextral strike slip trend subparallel and at large angles to the rift trend, respectively. Normal faults strike about 30° counterclockwise from the rift trend. If α exceeds 30°, normal faults form in rifts. They have moderate dips and generally strike obliquely to the rift trend and to the relative displacement direction between opposite sides of the rift. If α equals 90°, the normal faults strike parallel to the rift trend and perpendicularly to the displacement direction.The modeling results apply to the Gulf of California and Gulf of Aden, two Tertiary continental rift systems produced by combined extension and shear. Our results explain the presence and trends of oblique-slip and strike-slip faults along the margins of the Gulf of California and the oblique trend (relative to the rift trend) of many normal faults along the margins of both the Gulf of California and the Gulf of Aden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号