首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
提高中巴卫星IR MSS图像空间分辨能力的光谱保真融合方法   总被引:3,自引:1,他引:3  
介绍一种提高中巴资源卫星IRMSS图像空间分辨能力的光谱保真融合方法。通过计算低分辨率图像上每一个像元对应的高分辨率图像上一组子像元的平均亮度值及二者之差,将该差值与高分辨率图像上相应子像元亮度求和,形成新的图像。该图像具有高分辨率图像的空间细节,又具有低分辨率图像的光谱信息,从而实现融合图像信息保真。试验表明,光谱保真融合方法可以在不改变光谱信息的前提下提高IRMSS图像的空间分辨能力,是一种新的简单实用的数据处理方法。  相似文献   

2.
With the availability of very high resolution multispectral imagery, it is possible to identify small features in urban environment. Because of the multiscale feature and diverse composition of land cover types found within the urban environment, the production of accurate urban land cover maps from high resolution satellite imagery is a difficult task. This paper demonstrates the potential of 8 bands capability of World View 2 satellite for better automated feature extraction and discrimination studies. Multiresolution segmentation and object based classification techniques were then applied for discrimination of urban and vegetation features in a part of Dehradun, Uttarakhand, India. The study demonstrates that scale, colour, shape, compactness and smoothness have a significant influence on the quality of image objects achieved, which in turn governs the classified result. The object oriented analysis is a valid approach for analyzing high spatial and spectral resolution images. World View 2 imagery with its rich spatial and spectral information content has very high potential for discrimination of the less varied varieties of vegetation.  相似文献   

3.
HJ-1A/B卫星CCD影像的武汉市东湖水色三要素遥感研究   总被引:2,自引:0,他引:2  
以武汉市东湖为研究区域,利用同步的MODIS-Terra气溶胶光学厚度数据为输入参数,采用FLAASH模型对2010年3月11日HJ-1A/B卫星CCD影像进行大气校正处理,并利用多年实测数据建立叶绿素a浓度、悬浮泥沙浓度、黄色物质吸收系数三要素神经网络反演模型,对水色三要素进行反演。通过对反演结果与实测数据的对比分析可知,悬浮泥沙浓度、黄色物质吸收系数和叶绿素a浓度的平均相对误差分别为28.052%、17.628%和35.621%,表明HJ-1A/B卫星CCD传感器基本能满足II类水体水色要素的遥感监测需求。  相似文献   

4.
赵展  卢莹  夏旺  闫利 《测绘通报》2017,(12):16-20
WorldView卫星在8个可见光-近红外多光谱波段的基础上,新增加的8个短波红外(简称SWIR)影像,大大提高了地物信息提取能力.但短波红外影像分辨率与多光谱影像相比分辨率过低,影响应用效果.本文提出了一种结合主分量变换和非下采样小波变换的影像融合方法来提升WorldView短波红外影像的空间分辨率.定量指标和目视评价证明本文提出的融合方法具有较好的融合效果,能够在显著提升短波红外影像空间分辨率的同时很好地保持原始光谱特性.  相似文献   

5.
赵展  卢莹  夏旺  闫利 《测绘通报》2017,(12):16-20
WorldView卫星在8个可见光-近红外多光谱波段的基础上,新增加的8个短波红外(简称SWIR)影像,大大提高了地物信息提取能力。但短波红外影像分辨率与多光谱影像相比分辨率过低,影响应用效果。本文提出了一种结合主分量变换和非下采样小波变换的影像融合方法来提升WorldView短波红外影像的空间分辨率。定量指标和目视评价证明本文提出的融合方法具有较好的融合效果,能够在显著提升短波红外影像空间分辨率的同时很好地保持原始光谱特性。  相似文献   

6.
The recently launched IRS-P6 satellite has a unique capability of acquiring simultaneously multispectral data at three different spatial resolutions from three independent optical sensors (LISS-4, LISS-3 and AWIFS). Of these, the LISS-4 sensor can be operated in two modes: (i) multispectral (MX) mode covering a swath of 23 km and (ii) monochromatic (MO) mode covering a 70-km swath, both at a spatial resolution of 5 m. One of the important uses of the LISS-4 MO data is in realizing a 5 m band-sharpened multispectral image by merging it with the low-resolution LISS-3 MS image. Operationally anyone of the three LISS-4 bands can be chosen for the MO mode data acquisition. The performance of each band for producing band-sharpened MS images is evaluated, and the choice of the band based on the spatial and spectral characteristics of the merged data is suggested. The LISS-4 Red-band is found to be optimal. It provides band-sharpened imagery with spatial and spectral qualities very similar to the LISS-4 MX data products.  相似文献   

7.
融合形状和光谱的高空间分辨率遥感影像分类   总被引:13,自引:0,他引:13  
黄昕  张良培  李平湘 《遥感学报》2007,11(2):193-200
提出了一种像元形状指数及基于形状和光谱特征融合的高(空间)分辨率遥感影像分类方法。形状和光谱是遥感影像纹理的具体表现形式,尤其在高分辨率影像中地物细节得到充分表达,相邻像元的关系及其共同表征的形状特性成为分类的重要因素。本文用像元及其邻域的关系来描述其空间结构,同时为了更全面地利用影像特征,提出了基于支持向量机的形状和光谱融合分类方法。实验证明,该方法计算简便且能有效表达高分辨率影像的地物特征,提高分类精度。  相似文献   

8.
朱映  王密  潘俊  胡芬 《测绘学报》2015,44(4):399-406
卫星平台震颤是影响高分辨率卫星成像质量的因素之一,会引起影像模糊和内部畸变。本文从资源三号卫星多光谱相机的成像特点和多光谱影像配准误差影响因素入手,理论推导和仿真分析了卫星平台震颤对配准误差的影响规律,在此基础上提出了基于多光谱影像高精度密集匹配的平台震颤检测方法和流程,最后利用不同波段、不同时间的成像数据进行试验。试验结果表明资源三号卫星在试验数据成像阶段存在约0.6Hz的平台震颤,且垂轨方向震颤幅值大于沿轨方向,同时引起波段间相同频率周期性配准误差。检测结果为进一步提高资源三号处理精度提供了可能,也为卫星平台震颤源的分析和优化卫星平台设计提供了重要参考依据。  相似文献   

9.
Abstract

Three spatial resolutions of airborne remote sensing imagery (60 cm, 1 m, and 2 m) collected over multi‐layer aspen, pine, spruce, and mixedwood forest stands in Alberta on July 18th, 1998 were tested for their ability to provide a statistical stand discrimination based on spatial co‐occurrence texture analysis. As spatial resolution increased, classification accuracies increased. The highest classification accuracy of 86.7% was obtained using the highest image spatial resolution data (60 cm), with spatial co‐occurrence texture and spectral signatures combined, and a thirteen‐class multi‐layer stand stratification. The texture of the highest spatial resolution imagery (60 cm pixel resolution) was interpreted to contain information on the crown architecture of individual trees. In larger windows, the texture was interpreted to contain information on stand structure. Texture of lower spatial resolution imagery (1 m and 2 m pixel resolution) could not detect individual tree crown architecture and was determined to be related primarily to stand structure characteristics. The use of texture channels improved the per‐plot classification accuracies by 15.7%, compared to the use of the spectral data alone.  相似文献   

10.
This study addresses the problem of shadows in multi-temporal imagery, which is a key issue with change detection approaches based on image comparison. We apply image-to-image radiometric normalizations including histogram matching (HM), mean-variance (MV) equalization, linear regression based on pseudo-invariant features (PIF-LR), and radiometric control sets (RCS) representing high- and low-reflectance extrema, for the novel purpose of normalizing brightness of transient shadows in high spatial resolution, bi-temporal, aerial frame image sets. Efficient shadow normalization is integral to remote sensing procedures that support disaster response efforts in a near-real-time fashion, including repeat station image (RSI) capture, wireless data transfer, shadow detection (as precursor to shadow normalization), and change detection based on image differencing and visual interpretation. We apply the normalization techniques to imagery of suburban scenes containing shadowed materials of varied spectral reflectance characteristics, whereby intensity (average of red, green, and blue spectral band values) under fully illuminated conditions is known from counterpart reference images (time-1 versus time-2). We evaluate the normalization results using stratified random pixel samples within transient shadows, considering central tendency and variance of differences in intensity relative to the unnormalized images. Overall, MV equalization yielded superior results in our tests, reducing the radiometric effects of shadowing by more than 85 percent. The HM and PIF-LR approaches showed slightly lower performance than MV, while the RCS approach proved unreliable among scenes and among stratified intensity levels. We qualitatively evaluate a shadow normalization based on MV equalization, describing its utility and limitations when applied in change detection. Application of image-to-image radiometric normalization for brightening shadowed areas in multi-temporal imagery in this study proved efficient and effective to support change detection.  相似文献   

11.
高分辨率影像解译理论与应用方法中的一些研究问题   总被引:36,自引:4,他引:36  
宫鹏  黎夏  徐冰 《遥感学报》2006,10(1):1-5
近年来,不断发展的遥感技术使遥感数据呈现出高空间分辨率、高光谱分辨率和高时间采集频率的特点。卫星图像空间分辨率已经提高到0.6m级,而航空遥感数字影像分辨率高达0.1m以上。光谱分辨率高达3—4nm。不断发展的高分辨率遥感数据能够提高信息提取和监测精度,并拓展遥感数据的应用范围。目前,国外已经加快对高分辨率图像,特别是高空间分辨率影像,在城市环境、精准农业、交通及道路设施、林业测量、军事目标识别和灾害评估中的应用。但是总的情况是自动化程度不高。介绍高空间分辨率影像信息提取、高光谱和偏振影像信息提取、影像数据融合和高分辨率遥感变化探测等方面迫切需要研究的一些科学问题及其意义。建议建立图像知识库,改善数据共享环境,为有志于从事这方面研究的学者提供参考。  相似文献   

12.
Increasingly, remote sensing has become a useful tool for mapping and measuring terrestrial and aquatic environments. Advances in the spatial and spectral resolution of satellite-borne sensors have allowed affordable investigations of littoral macrotidal coastal systems that previously required more costly aircraft-based imagery. In this communication, we compare the results from analysis of a 4 m spatial resolution, multispectral IKONOS satellite image of the intertidal habitats of Islesboro, Maine, USA with that of an aerial compact airborne spectral imager survey of the same regions captured 4 years earlier. There was 72% agreement between the surveys in spite of the temporal gaps between the images. Accuracy varied by habitat class and the perceived error can be assigned to temporal and definitional issues rather than basic acquisition and analytic protocols. Most of the error can be explained by: (1) inadequacy of training sites, (2) temporal variations and (3) class definitions. We conclude that IKONOS imagery provides sufficient spatial and spectral resolution to map and monitor diverse intertidal habitats as found in the macrotidal Gulf of Maine.  相似文献   

13.
This paper proposes an integrated water body mapping method with HJ-1A/B satellite imagery, the CCD (charge coupled device) data of the Chinese environmental satellites that were launched on September 6th, 2008. It combines the difference between NDVI and NDWI (NDVI–NDWI) with SLOPE and near-infrared (NIR) band. The NDVI–NDWI index is used to enhance the contrast between water bodies and the surrounding surface features; the topographic SLOPE is used to eliminate the mountain shadow; and the NIR band is used to reduce the effects of artificial construction land. The objectives are evaluating the potential of the HJ-1A/B imagery on water body monitoring, and proposing ideally mapping method. The test study results indicated that the NDVI–NDWI index is superior to the single index of NDVI and NDWI to enhance the contrast between water bodies and the rest of the features. On the basis of the accurately mapped water bodies in the HJ-1A/B CCD images of the study area, we conclude that the HJ-1A/B multi-spectral satellite images is an ideal data source for high spatial and temporal resolution water bodies monitoring. And the integrated water body mapping method is suitable for the applications of HJ-1A/B multi-spectral satellite images in this field.  相似文献   

14.
Image fusion techniques integrate complimentary information from multiple image sensor data such that the new images are more suitable for the purpose of human visual perception and computer based processing tasks for extraction of detail information. As an important part of image fusion algorithms, pixel-level image fusion can combine spectral information of coarse resolution imagery with finer spatial resolution imagery. Ideally, the method used to merge data sets with high-spatial and highspectral resolution should not distort the spectral characteristics of the high-spectral resolution data. This paper describes the Discrete Wavelet Transform (DWT) algorithm for the fusion of two images using different spectral transform methods and nearest neighbor resampling techniques. This research paper investigates the performance of fused image with high spatial resolution Cartosat-1(PAN) with LISS IV and Cartosat-1(PAN) sensor images with the LISS III sensor image of Indian Remote Sensing satellites. The visual and statistical analysis of fused images has shown that the DWT method outperforms in terms of Geometric, Radiometric, and Spectral fidelity.  相似文献   

15.
With nanometric spectral resolution and number of bands as high as 220, Hyper spectral sensors like Hyperion and AVIRIS are gaining wide appreciation. Narrow, continuous wavelength of bands upon a vast spectrum of electromagnetic wavelength enables better precision in identification of materials by distinguishing between their unique spectral signatures. However, their poor spatial resolution is a major impediment in realising the full potential of hyperspectral imaging. Efforts are being made worldwide to improve the spatial resolution of hyperspectral imagery by fusing them with registered panchromatic imagery of higher resolution. However, most of the conventional methods fail to preserve the spectral fidelity of the fused images due to severe color distortion. Here, we propose an efficient paradigm to sharpen hyperspectral imagery with high spatial information content and minimal color distortion using color normalization by Lαβ and intensity image generation using Spectral Mixture Analysis. Quantitative assessment indices have been calculated to prove that our method is superior in terms of minimization of color distortion and maximization of spatial details as compared to other methods.  相似文献   

16.
QuickBird satellite imagery acquired in June 2003 and September 2004 was evaluated for detecting the noxious weed spiny aster [Leucosyris spinosa (Benth.) Greene] on a south Texas, USA rangeland area. A subset of each of the satellite images representing a diversity of cover types was extracted and used as a study site. The satellite imagery had a spatial resolution of 2.8 m and contained 11-bit data. Unsupervised and supervised classification techniques were used to classify false colour composite (green, red, and near-infrared bands) images of the study site. Imagery acquired in June was superior to that obtained in September for distinguishing spiny aster infestations. This was attributed to differences in spiny aster phenology between the two dates. An unsupervised classification of the June image showed that spiny aster had producer's and user's accuracies of 90% and 93.1%, respectively, whereas a supervised classification of the June image had producer's and user's accuracies of 90% and 81.8%, respectively. These results indicate that high resolution satellite imagery coupled with image analysis techniques can be used successfully for detecting spiny aster infestations on rangelands.  相似文献   

17.
Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features portrayed by pixels are equally weighted regardless of the shape and extent of the underlying scene objects, the rescaled image retains more of the original spatial information than would occur through direct observation at a coarser sensor spatial resolution. In contrast, for the observed images, due to the effect of the modulation transfer function (MTF) of the imaging system, high frequency features like edges are blurred or lost as the pixel size increases, resulting in greater variation in spatial structure. Successive applications of a low-pass spatial convolution filter are shown to mimic a MTF. Accordingly, it is recommended that such a procedure be applied prior to rescaling by simple block averaging, if insufficient image metadata exist to replicate the net MTF of the imaging system, as might be expected in land cover change analysis studies using historical imagery.  相似文献   

18.
The citrus industry has the second largest impact on Florida's economy, following tourism. Estimation of citrus area coverage and annual forecasts of Florida's citrus production are currently dependent on labor-intensive interpretation of aerial photographs. Remotely sensed data from satellites has been widely applied in agricultural yield estimation and cropland management. Satellite data can potentially be obtained throughout the year, making it especially suitable for the detection of land cover change in agriculture and horticulture, plant health status, soil and moisture conditions, and effects of crop management practices. In this study, we analyzed land cover of citrus crops in Florida using Landsat Enhanced Thematic Mapper Plus (ETM+) imagery from the University of Maryland Global Land Cover Facility (GLCF). We hypothesized that an interdisciplinary approach combining citrus production (economic) data with citrus land cover area per county would yield a correlation between observable spectral reflectance throughout the year, and the fiscal impact of citrus on local economies. While the data from official sources based on aerial photography were positively correlated, there were serious discrepancies between agriculture census data and satellite-derived cropland area using medium-resolution satellite imagery. If these discrepancies can be resolved by using imagery of higher spatial resolution, a stronger correlation would be observed for citrus production based on satellite data. This would allow us to predict the economic impact of citrus from satellite-derived spectral data analysis to determine final crop harvests.  相似文献   

19.
High spatial resolution hyperspectral images not only contain abundant radiant and spectral information, but also display rich spatial information. In this paper, we propose a multi-feature high spatial resolution hyperspectral image classification approach based on the combination of spectral information and spatial information. Three features are derived from the original high spatial resolution hyperspectral image: the spectral features that are acquired from the auto subspace partition technique and the band index technique; the texture features that are obtained from GLCM analysis of the first principal component after principal component analysis is performed on the original image; and the spatial autocorrelation features that contain spatial band X and spatial band Y, with the grey level of spatial band X changing along columns and the grey level of spatial band Y changing along rows. The three features are subsequently combined together in Support Vector Machine to classify the high spatial resolution hyperspectral image. The experiments with a high spatial resolution hyperspectral image prove that the proposed multi-feature classification approach significantly increases classification accuracies.  相似文献   

20.
Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size < 0.1 m) may compensate for some low spectral resolution drawbacks. In this regard, it is shown that the post-classification majority filtering substantially improves the accuracy of all pixel sizes up to the point where the kernel size reaches the average unit size (pixel < 0.25 m). However, careful investigation as to the effect of band distribution and choice could improve the sensor suitability for the marine environment task. This in mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号