首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of phytoplankton distribution and production, and zooplankton abundance and biomass were made during the summer of 1979 along several shelf-slope transects in the Mid-Atlantic Bight. At the shelf-break, macrozooplankton (>200 μm) grazing was estimated to be sufficient to remove a substantial proportion of daily phytoplankton production. In contrast, on the shelf and in slope waters, where ciliates were abundant, estimates of macrozooplankton grazing indicated a consumption rate less than 15% of the daily primary production. Ciliate grazing, even at non-maximum rates, potentially could have consumed the entire daily primary production in all areas sampled. The findings indicate that the nature of the heterotrophic community is spatially variable in offshore waters even during summer conditions and could influence not only trophodynamic pathways but perhaps nutrient regeneration and recycling. This would be an important consideration in evaluating the fate of particle-bound chemcial species in the water column since fecal pellet producing zooplankton would affect rates of removal and sedimentation in a different manner than ciliates which produce non-compacted digestive debris.  相似文献   

2.
营养盐(氮,磷)在湿地中的迁移与循环   总被引:7,自引:2,他引:7  
吴莹  张经  李道季 《海洋科学》2004,28(3):69-72
湿地是一类独特的生态系统,在水、陆界面间形成重要的污染物屏障,在维护自然生态平衡、改善资源状况等方面具有重要作用。与其它自然生态系统相比,湿地具有特殊的水资源、食物及原材料供给、环境净化、生物多样性保护等功能^[1、2]。营养盐在湿地中的循环和迁移是一重要课题。由于近岸水体富营养化的  相似文献   

3.
Abstract

Large diapiric and nondiapiric masses of Jurassic salt and Tertiary shale underlie the northern Gulf of Mexico continental slope and adjacent outer continental shelf. These masses show evidence of being structurally active at present and in the very recent geologic past. Local steepening of the sea floor in response to the vertical growth of these structures is a serious concern to those involved in the site selection and the construction of future oil and gas production and transportation facilities in this frontier petroleum province.

The seabed of the northern Gulf slope is hummocky and consists of many hillocks, knolls, and ridges interspersed by topographic depressions and canyon systems. Topographic highs and lows relate respectively to vertical diapiric growth and to withdrawal of large volumes of salt and shale. Topographic highs vary considerably in shape and size, but all have very limited areas of nearly flat sea floor. Intraslope topographic lows consist of three principal types: (1) remnants of submarine canyons blocked by diapiric uplift that terminated active downslope sediment transport common during stages of low sea level; (2) closed depressions formed by subsidence in response to salt and shale withdrawal and flow into surrounding diapiric uplifts; and (3) small collapse basins formed by faulting in strata arched over structural crests of diapirs.

Distribution patterns of both diapiric features and sediment accumulations on the slope are the result of the complex relationship that exists between sediment loading and diapirism. Diapiric activity is proportional to the thickness of salt or underconsolidated shale available for mobilization, and to the sedimentary load distribution on these highly plastic deposits. Variations in overburden load, in turn, are dependent on rates, volumes, and bulk densities of depo‐sitional influx; proximity to sources of supply, erosion, and distribution of sediments; and topographic control of sediment accumulation. Sediment capture in diapirically controlled interdomal basins and canyon systems localizes overburden load, thus inducing further diapiric growth, and complex structural and stratigraphic patterns are induced throughout the continental slope region.

Drill cores in the slope province indicate that most of the slope sediments are fine‐grained muds; appreciable quantities of sand‐size sediment are present principally in canyon axes. Turbidite sand layers drilled on a topographic high adjacent to the Gyre Basin reflect uplift far above their original deposition level, and calculations yield rates of uplift that average 2 to 4 m per 100 years. Seismic reflection profiles provide considerable evidence of “fresh”; slumps and ero‐sional surfaces on the flanks of many topographic highs not yet blanketed by a veneer of young sediments. This evidence thus supports our conclusion that the present continental slope region of the northern Gulf of Mexico is undergoing active diapirism and consequent slope steepening. Because most of the sediment on the flanks of diapiric structures consists of underconsolidated muds, slumping will take place regularly in response to further diapiric movement.  相似文献   

4.
Abstract

Grain size, coarse fraction analyses, and depositional environment as interpreted from microfauna are related to the character of sparker reflections at the location of core holes drilled by Exxon, Chevron, Gulf, and Mobil on the continental slope of the northern Gulf of Mexico. Continuous sparker reflections are correlated with slowly deposited, evenly bedded sediments containing bathyal faunas. The coarse fraction is dominated by the tests of foraminifera. Discontinuous, discordant reflections and diffractions are correlated with sediments more rapidly emplaced in the bathyal environment of the continental slope by slumping and sliding from the continental shelf. Their coarse fraction is dominated by terrigenous sand grains. A large portion of the volume of continental slope sediments appears to consist of these “displaced”; sediments, including an area 3–24 km wide and 80 km long, southeast of Corpus Christi, Texas. Comparable processes of movement of sediments are interpreted on the continental shelf south of the Southwest Pass of the Mississippi River. Bathymetry in this area is characterized by a series of subaqueous “gullies”; radiating from the river mouth and leading to terraces at their southern extremities. Side‐scan sonar and PDR surveys show a rough bottom in these “gullies”; and terraces, as contrasted with a relatively smooth bottom elsewhere. The rough bottom is interpreted as indicative of slump and creep of the sediments from shallower water. Some foundation soil borings in this area south of Southwest Pass find a low‐strength material gradually increasing in strength with depth. Other borings find a “crust”; of anomalously strong material 8–15 m below the mudline. The microfauna recovered from the “crust”; has moved to its present position by slump or creep from shallower water along a pattern comparable to the gullies shown in the present‐day bathymetry.  相似文献   

5.
The rate of benthic denitrification in slope and rise sediments of a transect across the N.W. European Continental Margin (Goban Spur) was evaluated from 31 pore water nitrate profiles obtained during six cruises between May and October. All profiles had well separated zones of nitrification and denitrification. High near-surface nitrate concentrations prevented the influx of nitrate from the bottom water. The denitrification rates obtained from steady-state-modelling ranged from 0.13 to 2.56 μmol N cm−2 y−1 and showed an exponential increase both with decreasing water depth and with increasing rate of organic carbon degradation. Denitrification rates in a nearby canyon, which did not follow these relationships, were estimated to be much higher as a result of erosion and redistribution of organic matter. Denitrification at the Goban Spur slope and rise is much lower than previously reported for similar environments in the Pacific resulting predominantly from the different oxygen and nitrate concentrations in the bottom water. A weighted average for the whole slope and rise sediment system shows that 17% of the particulate organic nitrogen input (8.93 μmol N cm−2 y−1) is denitrified and only 1% is buried, the rest being released as nitrate. Although being ten times higher compared with basin sediments, denitrification on the slope and rise is several times lower than on the adjacent shelf.  相似文献   

6.
The Loire estuary has been surveyed from 1982 to 1985 by 13 isochronous longitudinal profiles realized at low tide. Nutrient (SiO2, NO3, NH4+, PO3−4, particulate organic carbon or POC) patterns are very variable depending on the season, the estuarine section [river, upper-inner estuary, upstream of the fresh-water-saline-water interphase FSI, the lower-inner estuary characterized by the high turbidity zone (HTZ), the outer estuary] and the river discharge. Biological processes are dominant. In the eutrophied River Loire (summer pigment > 100 μg l−1), the high algal productivity (algal POC > 3 mg l−1) results in severe depletion of SiO2, PO43−, NO3. The enormous biomass (55 000 ton algal POC/year) is degraded in the HTZ where bacterial activity is intense. As a result, there is generally a regeneration of dissolved SiO2 and PO43−, a marked NH4+ maximum, while NO3 is conservative or depleted when the HTZ is nearly anoxic. Other processes can be considered including pollution from fertilizer plans (PO43−, NH4+) and from a hydrothermal power plant (NH4+). In the less turbid outer estuary, nutrients are generally conservative. Major variations of concentrations are observed in the lowest chlorinity section (Cl < 1 g kg) and also upstream the FSI, defined here as a 100% increase in Cl. Nutrient inputs to the ocean are not significantly modified for SiO2 and NO2, but are increased by 70% and 180% for PO43− and NH4+ and depleted by 60% for POC. Odd hydrological events, especially some floods, may perturbate or even mask the usual seasonal pattern observed in profiles.  相似文献   

7.
222Rn was measured in the near-bottom waters of the continental slope of the Mid-Atlantic Bight. Separate measurements of the 222Rn supported by dissolved 226Ra allowed the excess 222Rn that is derived from the underlying sediments to be distinguished. Measurements of production of 222Rn by the sediments were used to calculate fluxes of 222Rn from sediments that would be expected as a result of molecular diffusion. On the upper slope and on the lower slope excess 222Rn standing crops were, respectively, greater than and consistent with fluxes of radon from sediments by molecular diffusion as are typical of most ocean environments. On the middle slope, however, observed excess 222Rn concentrations and standing crops were significantly lower than what would be expected from the calculated fluxes from the underlying sediments. This unusual feature of low radon concentrations on the middle slope is referred to as the low-radon zone (LRZ). This LRZ was always present over several years and seasons, but was variable in intensity (excess-radon concentration and standing crop) and in location on the slope. Low concentrations of suspended particulate matter and low current velocities observed by others in the same region are consistent with low mixing as a possible cause of the LRZ. Radon profile shapes and recent work by others on near bottom mixing due to interactions between topography and internal waves, however, suggest that high mixing due to internal waves is a more likely cause of the LRZ.  相似文献   

8.
南海东沙岛西南大陆坡内潮特征   总被引:2,自引:0,他引:2  
2008年4月-10月,在南海东沙岛西南大陆坡底部布放了1套全剖面锚系,同时沿大陆坡底部布放了3套近底锚系,应用谱分析和调和分析方法分析温度和海流连续观测资料,进而研究该海域的内潮特征.结果表明,东沙岛西南大陆坡存在强内潮现象,大陆坡底部温度变化受到内潮波的影响,上层海洋存在强日潮周期的内潮波振动;正压潮和斜压潮均以O...  相似文献   

9.
《Journal of Sea Research》2003,49(3):157-170
The distribution of nutrients and carbon in the different pools present in the three functional layers (the upper, biogenic layer, the thermocline layer, and the deeper, biolythic layer) of the stratified NW Mediterranean Sea was examined. The stoichiometry between dissolved inorganic nutrients, which had low concentrations in the surface waters, indicated a deficiency in nitrogen, relative to phosphorus, and an excess nitrogen relative to phosphorus within the thermocline, as well as a general silicate deficiency relative to both N and P, even extending to the biolythic layer. The dissolved organic matter was highly depleted in N and, particularly, in P relative to C, with average DOC/DON ratios >60 and DOC/DOP ratios >1500 in all three layers. The particulate pool was also depleted in N and P relative to C, particularly in the biolythic layer. The concentration of biogenic silica was low relative to C, N and P, indicating that diatoms were unlikely to contribute a significant fraction of the seston biomass. Most (>80%) of the organic carbon was present as dissolved organic carbon. Total organic N and P comprised 50–80% of the N and P pool in the biogenic layer, and decreased with depth to represent 10–25% of these nutrient pools in the biolythic layer. The high total N:P ratios in all three depth layers (N/P ratio >20) indicated an overall phosphorus deficiency in the system. The high P depletion of the dissolved organic matter must derive from a very rapid recycling of the P-rich molecules within DOM, and the increasing C/N ratio of DOM with depth indicates that N is also recycled faster than C in the DOM. Because of the uniform depth distribution of the total dissolved nitrogen concentration, the increase in the percent inorganic N and the decline in the percent dissolved organic N with depth indicates that there must be biological transformations between these pools, with a dominance of DON production in surface waters and remineralisation in the underlying layers, from which dissolved inorganic nitrogen is supplied back to the biogenic layer. Downward fluxes of DON and DOC were estimated at 200–250 μmol N m−2 d−1 and 1.4–2.1 mmol C m−2 d−1, respectively, while there should be little or no export of P as dissolved organic matter. The downward DON flux exceeded the diffusive DIN supply of about 145 μmol N m−2 d−1 to the biogenic layer, suggesting that allochthonous N inputs must be important in the region.  相似文献   

10.
Bathymetric charts of the continental slope of the northwestern Gulf of Mexico reveal the presence of over 90 intraslope basins with relief in excess of 150 m. The evolution and the general configuration of the basins are a function of halokinesis of allochthonous salt. Intraslope-interlobal and intraslope-superlobal basins occupy the upper and lower continental slope, respectively. Other structures on the slope associated with salt tectonics are the Sigsbee Escarpment, the seaward edge of the Sigsbee salt nappe, and the Alaminos and Keathley canyons. Major erosional features are the Mississippi Canyon and portions of a submarine canyon on the southern extreme of the Sigsbee Escarpment.  相似文献   

11.
12.
The EM12 multibeam echosounder can record acoustic backscatter information as well as high resolution bathymetry. The dataset presented, from the axis of the Mid-Atlantic Ridge at 45° N, was the first EM12 survey of a mid-ocean ridge. This paper presents methods for utilising the backscatter information. Data processing enables the production of a mosaic of acoustic backscatter, and visualisation techniques are investigated to provide initial qualitative views of the combined backscatter and bathymetry datasets. The co-registration of the backscatter and bathymetry data enables quantitative analysis of their relationships. Various sites of different geological type have been selected and their angular acoustic backscattering relationships estimated, including the effect on backscatter of incidence angle, its regional variability with bottom type and the influence of bottom slope. Incidence angles and bottom type are shown to affect backscatter to a similar degree, while slopes appear to contribute little. The geometry of hull-mounted systems, such as the EM12, is significantly different from that of conventional sidescan sonars, such as GLORIA, and the backscatter images from the two types differ in various respects. Because of the wide variations in incidence angle that are common with hull-mounted systems, and the importance of incidence angle in determining backscatter strength, it is vital to consider the effect of incidence angle during interpretation.  相似文献   

13.
Ten gas-vent fields were discovered in the Okhotsk Sea on the northeast continental slope offshore from Sakhalin Island in water depths of 620—1040 m. At one vent field, estimated to be more than 250 m across, gas hydrates, containing mainly microbial methane (13C = –64.3), were recovered from subbottom depths of 0.3–1.2 m. The sediment, having lenses and bedded layers of gas hydrate, contained 30–40% hydrate per volume of wet sediment. Although gas hydrates were not recovered at other fields, geochemical and thermal measurements suggest that gas hydrates are present.  相似文献   

14.
An extensive field of mud waves occupies the Lower Continental Rise, east of Cape Hatteras, USA. Seismic profiles at Deep Sea Drilling Project Site 603 show that they have migrated upcurrent at a steadily decreasing rate, until a standing wave phase was established in the Quaternary. The growth of the waves was terminated between the early Pleistocene and Holocene by an erosional event(s). Erosion was greatest on the downcurrent sides of the waves causing an apparent upcurrent migration at the surface. It is suggested that erosion may have played a significant part in the migration of the deeper waves at Site 603.  相似文献   

15.
The continental slope south of Baltimore Canyon seaward of the coasts of Delaware and Maryland has a different morphology and sedimentary structure than adjacent portions of the continental margin. Ridges of sediment 600 m thick and transverse to the slope contain many unconformities that can be traced from ridge to ridge. The age of the sediment is inferred to be late tertiary to recent with the morphology related to a major drainage system. Physical properties of a suite of sediment cores display a pattern that varies in relationship to the morphology and depositional environment. Sedimentary structures and low shear strengths indicate instability of surficial sediments present on the upper slope and can be correlated with regions where the seismic reflection profiles show slumping has occurred. A veneer of sand overlying the general silty clay of the area is present on the upper slope and on the ridges indicating sand spillover from the shelf with a recent change in deposition pattern.  相似文献   

16.
大陆坡脚是大陆边缘的一个重要地形特征,是沿海国扩展其大陆架权利和划定其200海里以外大陆架外部界限的基础,也是大陆架界限委员会审议沿海国划界案时特别关注的重要技术参数。《联合国海洋法公约》第76条大陆架制度的制定源于典型的被动大陆边缘。但由于全球大陆边缘的多样性和复杂性,特别是后期构造活动、沉积作用对大陆边缘的改造与影响,海底地形地貌异常复杂多变,导致大陆坡脚的识别非常困难。加上各沿海国为获得最大范围的外大陆架,对大陆坡脚的相关规定进行有利于自己的解释,使得大陆坡脚的确定成了外大陆架划界中一个颇具争议的热点问题。本文基于对《联合国海洋法公约》和《大陆架界限委员会科学和技术准则》对大陆坡脚的规定,结合不同类型大陆边缘的地质特征和各沿海国划界实践,对陆坡基部区的确定、坡度变化最大之点的选取以及相反证明规则的适用性等问题进行了探讨。  相似文献   

17.
Sediments from the seabed off the eastern side of the North Island, New Zealand, are divided into 12 facies on the basis of grain size and mineralogy of the sand fraction. The facies are grouped into three types; modern detrital sediments, relict detrital sediments, and non‐detrital sediments. The sediments are described in terms of a modified Wentworth grain‐size scale and a modified Folk sediment classification.

The modern detrital sediments range from fine sand near the shore to clayey fine silt on the lower slope. At most places they are bimodal, probably because floes and single grains are deposited together. The relict detrital sediments, which include sands and gravels, occur where deposition is slow on the inner continental shelf and near the shelf edge. Those near the shelf edge include Last Glacial sandy muds that have been winnowed and mixed with Holocene volcanic ash and glauconite. The non‐detrital sediments, which contain forarninifera, volcanic ash, and glauconite, but no detrital sand, occur on anticlinal ridges on the continental slope. In places they overlie muddier sediment deposited during the last glaciation when the sources of river‐borne detritus were nearer than at present and when mud was deposited more rapidly on the ridges than at present.  相似文献   

18.
A field program to measure acoustic propagation characteristics and physical oceanography was undertaken in April and May 2001 in the northern South China Sea. Fluctuating ocean properties were measured with 21 moorings in water of 350- to 71-m depth near the continental slope. The sea floor at the site is gradually sloped at depths less than 90 m, but the deeper area is steppy, having gradual slopes over large areas that are near critical for diurnal internal waves and steep steps between those areas that account for much of the depth change. Large-amplitude nonlinear internal gravity waves incident on the site from the east were observed to change amplitude, horizontal length scale, and energy when shoaling. Beginning as relatively narrow solitary waves of depression, these waves continued onto the shelf much broadened in horizontal scale, where they were trailed by numerous waves of elevation (alternatively described as oscillations) that first appeared in the continental slope region. Internal gravity waves of both diurnal and semidiurnal tidal frequencies (internal tides) were also observed to propagate into shallow water from deeper water, with the diurnal waves dominating. The internal tides were at times sufficiently nonlinear to break down into bores and groups of high-frequency nonlinear internal waves.  相似文献   

19.
20.
The principal factors that control the extent of seas through geological time are vertical movements of the lithosphere and global changes in sea level. The relative height of the sea surface determines the facies and the thickness of sediments that can accumulate in a sedimentary basin. Backstripping studies show that the primary factors affecting the subsidence of rifted sedimentary basins are thermal contraction, following heating and thinning of the lithosphere at the time of rifting, and sedimentary loading. Factors such as compaction, palaeobathymetry, erosion and global sea level changes also contribute, but their combined affects are small compared to those of thermal contraction and sedimentary loading. Simple models have been constructed which combine the effects of sedimentary loading and thermal contraction with those of compaction, sub-aerial erosion and global changes in sea level. In the models it was assumed that the lithosphere was heated and thinned by stretching at the time of rifting, sedimentary loading occurs by flexure of a lithosphere that progressively increases its flexural rigidity with age following rifting and, that sediment compaction and bathymetry change across a basin but do not vary significantly with gwological time. Furthermore, different assumptions were made on the magnitude of curves of global sea level changes and the relationship between denudation rate and regional elevation. The models show that tectonics, in the form of thermal contraction of the lithosphere and flexure and slowly varying global changes in sea level, can explain a number of the stratigraphic features of the US Atlantic continental margin. In this Paper some of the implications of these results are examined for studies of (a) sea level changes through geological time; and (b) the maturation history of continental margin basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号