共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
非监督波段选择方法是高光谱图像降维的主要方法,但现有方法应用到实际高光谱图像分类时,分类精度并不理想。本文提出一种改进的基于聚类的高光谱图像非监督波段选择方法,主要通过对传统的K-means聚类算法进行两方面改进:一方面是相似性度量函数;另一方面是聚类中心的选取。然后,通过实验数据用支持向量机法(SVM)对所提算法及现有的三种非监督波段选择方法进行分类。最后,用总体精度(OA)和Kappa系数评价分类结果。表明本文所提方法在分类精度方面优于其他现有方法。 相似文献
3.
4.
高光谱影像受到高维波段间强相关性的困扰,导致处理应用的困难。而现有高光谱波段选择方法通常以线性角度考虑波段间关系,未充分考虑多尺度的信息且容易受到噪声的影响,导致所选的波段子集性能不佳。为了克服上述问题,本文提出了基于多特征的深度子空间聚类方法进行高光谱影像波段选择。该方法将自表达层嵌入到卷积自编码器中学习子空间自表达系数,充分考虑了空间信息和光谱信息的交互,用非线性的视角思考了波段间关系。为了提高潜在表征的学习能力,提升自表达系数学习的准确性,本文将注意力模块和多特征提取模块与卷积自编码器相结合,进一步降低了异常值的干扰。本文在3个高光谱遥感影像数据集上,将提出的方法与几种经典主流的方法进行多种对比实验,证明了本文方法能够选择具有代表性的波段子集。 相似文献
5.
本文提出了一种聚类特征和SVM组合的高光谱影像半监督协同分类方法。利用构建的协同分类框架能够将KSFCM聚类算法与半监督SVM分类器相结合,同时利用聚类和分类优势,提高分类器的分类准确率。其中,通过聚类损耗函数、分类一致函数、分类差异性、样本差异性四个指数用以构建协同分类框架,以充分利用少量类标签样本信息,避免高光谱类标签样本获取困难问题,在一定程度上解决SVM支持向量随着训练样本增加而线性增加的问题,从而寻求最佳分类结果。实验结果表明,本文所提方法得到的分类精度优于直接利用SVM进行半监督分类。 相似文献
6.
高光谱遥感光谱相似性度量算法与若干新方法研究 总被引:3,自引:0,他引:3
提出了一种新的光谱相似性度量算法分类体系。在归纳算法的基础上,根据不同的度量原理与实现策略,结合应用需求,提出了基于光谱多边形的测度、四值编码、十进制编码、树状变换测度及基于小波变换的测度等新方法,这些方法能够应用于分类、检索等的相似性度量中。 相似文献
7.
针对微惯性零速修正算法中步态特征的准确提取,以及步态特征的无规律性成为制约行人导航系统中步态信息提取与辨识的问题,该文提出一种基于K均值聚类自适应的行人步态特征辨别方法。分析行人步态规律并通过设定角速率阈值法对步态特征进行初判后,采用K均值聚类自适应算法设定时间阈值并将误判的步态进行纠正。为验证该算法的普适性,分别针对不同测试个体和同一个体5组不同行走速度条件下的步态特征判别实验,结果表明,本文提出的步态自适应判别方法对不同个体具有良好的适应性;为进一步验证K均值自适应步态判别算法对人员位置解算的准确性,分别开展圆形及400m跑道闭合行走实验,对比不同行走路径对应的位置误差可看出,解算位置误差虽然随行走距离增大而增加,但其相对误差均不超过2%。 相似文献
8.
传统谱聚类的高光谱影像波段选择模型中,采用的波段相似矩阵受到噪声或异常值的影响且仅能表征波段的单一相似特征,导致波段子集的选取结果受到限制。本文从波段选择的目的出发,提出鲁棒多特征谱聚类方法,整合多个特征的波段相似矩阵来形成综合相似矩阵以解决上述问题。该方法假设4种相似性度量包括光谱信息散度、光谱角度距离、波段相关性和拉普拉斯图谱能够共同揭示波段聚类的内在结构特征,通过构建低秩稀疏矩阵分解模型来表征单一相似矩阵与综合相似矩阵的内在关系。进一步,采用增强拉格朗日乘子算法来优化求解综合相似矩阵,利用常规谱聚类方法来聚合所有波段至不同的类别,并选取代表性波段。采用两个常用的高光谱影像数据,对比5种常用的波段选择方法来进行实验验证。实验结果表明,鲁棒多特征谱聚类方法优于改进稀疏子空间聚类、常规谱聚类方法和其他主流波段选择方法,而且计算效率较高。 相似文献
9.
基于最佳波段组合的高光谱遥感影像分类 总被引:6,自引:0,他引:6
针对高光谱数据维数高、数据量大、信息冗余多、波段相关性强等特点,在综合各种数据降维方法的基础上,提出一种基于最佳波段组合的高光谱遥感影像分类方法。以美国印第安纳州地区的AVIRIS数据为例,分析各波段信息量和相邻波段的相关性,利用子空间划分、分段波段指数选择法,进行特征波段的选择;并针对难区分地物类别,应用J-M距离模型对其可分性进行判别,获得最佳波段组合。最后采用支持向量机分类器进行分类。实验结果表明,采用最佳波段组合方法,可以有效地提高高光谱的分类精度。 相似文献
10.
高光谱遥感影像优化分类波段选择 总被引:3,自引:0,他引:3
利用粗糙集关于属性依赖性公式,本文给出一种定义遥感影像波段间相似度的方法,通过模糊聚类,得到对高光谱遥感影像原始波段集合的模糊等价划分,在每个模糊等价波段组中,选择一个代表性波段完成对原始波段集合的初步降维,基于遗传算法并结合粗糙集理论,在降维中的波段集合中进一步进行的分类波段组合的优化选择,实验结果表明,本文给出的高光谱遥感影像优化分类波段组合选择方法是非常有效的。 相似文献
11.
12.
提出了一种融合光谱和空间结构信息的高光谱遥感影像增量分类算法INC_SPEC_MPext。通过主成分分析(PCA)提取高光谱影像的若干主成分,利用数学形态学提取各主分量影像对应的形态学剖面(MP),再将所有主分量影像的形态学剖面归并联结,组成扩展的形态学剖面(MPext)。将MPext与光谱信息相结合以增加知识,最大限度地挖掘未标记样本的有用信息,优化分类器的学习能力。不断从分类器对未标记样本的预测结果中甄选置信度高的样本加入训练集,并迭代地利用扩大的训练集进行分类器构建和样本预测。以不同地表覆盖类型的AVIRIS Indian Pines和Hyperion EO-1Botswana作为测试数据,分别与基于光谱、MPext、光谱和MPext融合的分类方法进行比对。试验结果表明,在训练样本数量有限情况下,INC_SPEC_MPext算法在降低分类成本的同时,分类精度和Kappa系数都有不同程度的提高。 相似文献
13.
14.
15.
16.
震害损失主要是由建筑物损毁造成的,对城镇建筑物进行有效分类可以做好震害风险防范,通过遥感影像信息提取的方法对建筑物进行分类能提高工作效率.采用多分割图层及多尺度分割技术,利用特征库阈值分类与样本最邻近分类相结合的方法对遥感影像建筑物进行信息提取及分类.分类结果精度评价表明该方法优于利用单一分割图层样本最近邻分类结果,可... 相似文献
17.
基于欧式距离的K-均值聚类算法是一种硬分类(把每个待辨识的对象严格地划分到某个类中)方法,面对具有不确定性和混合像元特征的遥感图像数据,传统K-均值聚类算法很难得到满意的分类结果.为解决这一难题,将集对分析(set pair analysis,SPA)理论推广到遥感图像聚类算法,通过引入一个能统一描述同一性、差异性和对立性的同异反(identical discrepancy contrary,IDC)联系度,提出了基于IDC联系度的改进的K-均值聚类算法.该方法克服了传统K-均值算法硬分类的缺陷,可以有效地提高遥感图像聚类精度.对Landsat5 TM卫星数据的聚类分析实验表明,在含有混合像元的遥感图像地物覆盖分类中,改进的K-均值聚类方法的分类效果要优于传统K-均值聚类方法. 相似文献
18.
基于核Fisher判别分析的高光谱遥感影像分类 总被引:7,自引:2,他引:7
高光谱遥感技术,将反映目标辐射特性的光谱信息与反映目标空间位置关系的图像信息有机地结合在一起.高光谱影像具有丰富的光谱信息,较全色、多光谱影像能够更好的进行地面目标的分类识别.在介绍核Fisher判别分析算法的基础上,选用径向基核函数,使用一对一或一对余构造多类构造法,并利用交叉验证网格搜索法优化核函数参数,构建了快速稳定的多类核Fisher判别分析分类器.通过OMIS和AVIRIS影像的分类实验,表明了核Fisher判别分析与支持向量机的分类精度相当,但是所需的训练时间较短. 相似文献