首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
We present calculations of the internal structures of stationary ionization fronts with oblique upstream magnetic fields. Solutions are found only within the range of upstream parameters allowed by the evolutionary conditions derived by us in a previous paper. As is the case for hydrodynamic ionization fronts, overheating of the gas within the front can mean that not all the solutions allowed by the evolutionary conditions correspond to resolved internal structures. Some, but not all, of these jumps can be realized by structures with included subshocks: we present a full range of internal structures for fronts close to criticality, and discuss how to avoid spurious 'strong-R' type solutions.
The solutions we study suggest that significant transverse velocities and modulations of the perpendicular magnetic field may characterize obliquely magnetized ionization fronts. We briefly discuss the observability of the internal structures.  相似文献   

2.
3.
Using a time-dependent multifluid, magnetohydrodynamic code, we calculated the structure of steady perpendicular and oblique C-type shocks in dusty plasmas. We included relevant processes to describe mass transfer between the different fluids, radiative cooling by emission lines and grain charging, and studied the effect of single- and multiple-sized grains on the shock structure. Our models are the first of oblique fast-mode molecular shocks in which such a rigorous treatment of the dust grain dynamics has been combined with a self-consistent calculation of the thermal and ionization structures including appropriate microphysics. At low densities, the grains do not play any significant rôle in the shock dynamics. At high densities, the ionization fraction is sufficiently low that dust grains are important charge and current carriers and, thus, determine the shock structure. We find that the magnetic field in the shock front has a significant rotation out of the initial upstream plane. This is most pronounced for single-sized grains and small angles of the shock normal with the magnetic field. Our results are similar to previous studies of steady C-type shocks showing that our method is efficient, rigorous and robust. Unlike the method employed in the previous most detailed treatment of dust in steady oblique fast-mode shocks, ours allow a reliable calculation even when chemical or other conditions deviate from local statistical equilibrium. We are also able to model transient phenomena.  相似文献   

4.
We present models for the chemistry in gas moving towards the ionization front of an HII region. When it is far from the ionization front, the gas is highly depleted of elements more massive than helium. However, as it approaches the ionization front, ices are destroyed and species formed on the grain surfaces are injected into the gas phase. Photodissociation removes gas phase molecular species as the gas flows towards the ionization front. We identify models for which the OH column densities are comparable to those measured in observations undertaken to study the magnetic fields in star forming regions and give results for the column densities of other species that should be abundant if the observed OH arises through a combination of the liberation of H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S. Observations of these other species may help establish the nature of the OH spatial distribution in the clouds, which is important for the interpretation of the magnetic field results.  相似文献   

5.
Weak upstream overdensities or underdensities lead to the corrugation of R-type ionization fronts. The propagation velocity of the R-type front varies as a result of the different line-of-sight emission measures, and is also decreased because of the obliqueness of the front. The transition to D type occurs earlier in some parts of the front, and the resulting non-linear instability of the front leads to the formation of dense clumps and tails within the H  ii region.
In this paper, we discuss criteria for the development of this instability. In developing numerical models of this process, we have encountered numerical artefacts that have to be treated with care in high-resolution hydrodynamical simulations of H  ii regions. We discuss the application of our results to the structure and development of H  ii regions.  相似文献   

6.
An axisymmetric model for the Crab nebula is constructed to examine the flow dynamics in the nebula. The model is based on that of Kennel & Coroniti, although we assume that the kinetic-energy-dominant wind is confined to an equatorial region. The evolution of the distribution function of the electron–positron plasma flowing out in the nebula is calculated. Given viewing angles, we reproduce an image of the nebula and compare it with the Chandra observation.
The reproduced image is not ring-like, but is rather 'lip-shaped'. It is found that the assumption of a toroidal field does not reproduce the Chandra image. We must assume that there is a disordered magnetic field with an amplitude as large as the mean toroidal field. In addition, the brightness contrast between the front and back sides of the ring cannot be reproduced if we assume that the magnetization parameter σ is as small as ∼10−3. The brightness profile along the semimajor axis of the torus is also examined. The non-dissipative, ideal-magnetohydrodynamic approximation in the nebula appears to break down.
We speculate that if the magnetic energy is released by some process that produces a turbulent field in the nebula flow and causes heating and acceleration – for example, by magnetic reconnection – then the present difficulties may be resolved (i.e. we can reproduce a ring image and a higher brightness contrast). Thus, the magnetization parameter σ can be larger than previously expected.  相似文献   

7.
We performed an observational study of the dark filaments Lupus 1 and Lupus 4 using both polarimetric observations of 190 stars and a sample of 72 12CO profiles towards these clouds. We have estimated lower limits to the distances of Lupus 1 and Lupus 4 (≳ 140 and ≳ 125 pc, respectively). The observational strategy of the survey allows us to compare the projected magnetic field in an extended area around each cloud with the magnetic field direction observed to prevail along the clouds. Lupus 4 could have collapsed along the magnetic field lines, while in Lupus 1 the magnetic field appears to be less ordered, having the major axis of the filaments parallel to the large-scale projected magnetic field. These differences would imply that both filaments have different pattern evolutions. From the CO observations we have probed the velocity fields of the filaments and the spatial extension of the molecular gas with respect to the dust.  相似文献   

8.
The motivation for the present work is discussed, and in Section 2 the nonlinear Burger's equation is derived for wave propagation in a compressible unstratified viscous fluid permeated by a magnetic field (initially constant), using the reductive perturbation method of Taniuti and Wei (1968). An analytic solution of the equation is given (after Sakai, 1972) and the angular behaviour is shown for certain parameters describing the nonlinearity and damping of the system, for both fast- and slow-mode disturbances.  相似文献   

9.
If the observed relativistic plasma outflows in astrophysical jets are magnetically collimated and a single-component model is adopted, consisting of a wind-type outflow from a central object, then a problem arises with the inefficiency of magnetic self-collimation to collimate a sizeable portion of the mass and magnetic fluxes in the relativistic outflow from the central object. To solve this dilemma, we have applied the mechanism of magnetic collimation to a two-component model consisting of a relativistic wind-type outflow from a central source and a non-relativistic wind from a surrounding disc. By employing a numerical code for a direct numerical solution of the steady-state problem in the zone of super-fast magnetized flow, which allows us to perform a determination of the flow with shocks, it is shown that in this two-component model it is possible to collimate into cylindrical jets all the mass and magnetic fluxes that are available from the central source. In addition, it is shown that the collimation of the plasma in this system is usually accompanied by the formation of oblique shock fronts. The non-relativistic disc-wind not only plays the role of the jet collimator, but it also induces the formation of shocks as it collides with the initially radial inner relativistic wind and also as the outflow is reflected by the system axis. Another interesting feature of this process of magnetic collimation is a sequence of damped oscillations in the width of the jet.  相似文献   

10.
Many observations indicate the occurrence of ionized gas in the distant haloes of galaxies (including our own). Since photoionization by stars (mainly O stars, young stars or evolved low-mass stars depending on the kind of galaxy) does not seem to be exclusively responsible for the ionization of the hydrogen filaments that should otherwise cool fast and recombine quickly, the question arises which extra energy source can produce the quasi-stationary ionization. We show that stationary localized magnetic reconnection in current filaments may contribute to the ionization of the extraplanar halo gas. In these filaments magnetic energy is dissipated. Consequently, the ionized as well as the neutral component is heated and re-ionized on a time-scale significantly shorter than the recombination time-scale. The amount of energy required for efficient re-ionization can in principle easily be provided by the free magnetic energy. We present quasi-static models that are characterized by plasma temperatures and densities that agree well with the observed values for the diffuse ionized gas component of the interstellar medium. Plasma–neutral gas fluid simulations are made to show that the recombination-induced dynamical reconnection process indeed works in a self-regulatory way.  相似文献   

11.
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe  ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1. VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1. The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images.  相似文献   

12.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

13.
A numerical scheme is proposed for the solution of the three-dimensional (3D) radiative transfer equation with variable optical depth. We show that time-dependent ray tracing is an attractive choice for simulations of astrophysical ionization fronts, particularly when one is interested in covering a wide range of optical depths within a three-dimensional clumpy medium. Our approach combines the explicit advection of radiation variables with the implicit solution of local rate equations given the radiation field at each point. Our scheme is well suited to the solution of problems for which line transfer is not important, and could, in principle, be extended to those situations also. This scheme allows us to calculate the propagation of supersonic ionization fronts into an inhomogeneous medium. The approach can be easily implemented on a single workstation and should also be fully parallelizable.  相似文献   

14.
C-type shocks in the partially ionized ISM are modelled by numerical simulations. Under certain conditions the shocks are subject to the Wardle instability, which initially makes the shock front rippled, then in the non-linear stage can produce density variations in both the ion and neutral fluids. A systematic search in the numerically accessible parameter space is done to determine the wave vector kmax and the growth rates max of the fastest growing modes. The neutral Alfvén number, and the angle sbetween the shock normal and the upstream magnetic field determine the strength and obliqueness of the shock, as well as the dimensionless parameters of the fastest growing mode. The results confirm and extend Wardle's linear analysis.The non-linear evolution shows saturation of the instability and the formation of high density regions that detach from the shock front with the downstream flow. Numerical difficulties are partially solved by an implicit treatment of the ion-neutral friction terms, but strong shocks still can not be modelled efficiently. A fully implicit method for the ions and the magnetic field is used to model C-type shocks with low fractional ionization and high ion Alfvén speed.  相似文献   

15.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

16.
The acceleration of relativistic particles is considered during their intersection with hydromagnetic shock fronts in the presence of randomly distributed large-scale magnetic fields. In a series of astronomical objects, the Larmor radius of the relativistic particles exceeds the width of the shock front. In this case there is a change in the adiabatic invariant which results in an increase in the energy of the particle when it crosses the front in any direction. We have proved that the adiabatic part of the energy change will be partially or completely compensated by its reverse change in the weaker regions of the magnetic field. The acceleration mechanism considered is found to be more effective than the Fermi mechanism.If the mean free path of the particles is much less than the distance between the shock fronts, magnetic small-scale fluctuations cause further scattering of the particles. In this case the particles following and crossing the front will return to it. After reversed crossing, a fraction of the particles-defined by the ratio of the front speed to the particle velocity or of the distance between the fronts to the free path — will not return to the front. It is proved that for both large and small free paths the rates at which the particle gains energy are nearly the same.  相似文献   

17.
Radio surveys of supernova remnants (SNRs) in the Galaxy have discovered 19 SNRs which are accompanied by the OH maser emission at 1720 MHz. This unusual maser is thought to be produced behind a shock front when a SNR expands into a molecular cloud. An important ingredient of this model is that the X-ray emission from the remnant enhances the production of OH molecules. In this sense, to study the characteristics of the mixed-morphology SNRs accompanied by the OH maser emission at 1720 MHz is important. By studying the X-ray characteristics of the mixed-morphology SNRs accompanied by the 1720 MHz OH maser emission, it is found that the ionization rate of X-ray is not correlated with the physical parameters , D, r, r2 and so on, but is correlated with the X-ray luminosity Lx. Meanwhile, Lx is closely correlated with the beam flux density of the weakest feature of the accompanying 1720 MHz OH maser emission. These mean that the X-ray emission from SNRs is sufficient to dissociate the water molecules behind a shock front and to produce the 1720 MHz OH masers.  相似文献   

18.
Recent observations show the existence of an increasing number of collimated outflows ejected by young, low-mass stars which are embedded in H  ii regions. At distances of a few tens of au from the star, at least one lobe of these outflows will be shielded from the ambient ionizing radiation by the compact, high-extinction circumstellar disc. Within these shielded regions, the jets are probably mostly neutral, similar to the jets in 'normal' Herbig–Haro (HH) objects. At larger distances, these jets emerge into the photoionized nebula, and start to be photoionized by the radiation from the ionizing photon source of the nebula.
In this paper, we model the photoionization of an initially neutral HH jet. This process begins as an ionization front at the side of the jet, which is directed towards the ionizing star of the nebula, and progresses into the beam of the jet. There are two possible solutions. In the first solution, the jet beam becomes fully ionized through the passage of an R-type ionization front. In the second solution, the ionization front slows down enough to become a D-type front (or is already a D-type front at the point in which the jet emerges into the photoionized nebula), forming a partially ionized jet beam, with an expanding photoionized region and a compressed neutral region.
We explore these two types of solutions both analytically and numerically, and discuss the observational effects introduced by this jet photoionization process, concentrating in a region of parameter space that straddles the parameters deduced for HH 444 (the jet from V 510 Orionis).  相似文献   

19.
Hydrostatic equilibrium of the multiphase interstellar medium in the solar vicinity is reconsidered, with the regular and turbulent magnetic fields treated separately. The regular magnetic field strength required to support the gas is consistent with independent estimates, provided that energy equipartition is maintained between turbulence and random magnetic fields. Our results indicate that a mid-plane value of B 0=4 μG for the regular magnetic field near the Sun leads to more attractive models than B 0=2 μG . The vertical profiles of both the regular and random magnetic fields contain disc and halo components, the parameters of which we have determined. The layer at 1≲| z |≲4 kpc can be overpressured and an outflow at a speed of about 50 km s−1 may occur there, presumably associated with a Galactic fountain flow, if B 0≃2 μG .
We show that hydrostatic equilibrium in a warped disc must produce asymmetric density distributions in z , in rough agreement with H  i observations in the outer Galaxy. This asymmetry may be a useful diagnostic of the details of the warping mechanism in the Milky Way and other galaxies. We find indications that gas and magnetic field pressures are different above and below the warped midplane in the outer Galaxy, and quantify the difference in terms of turbulent velocity and/or magnetic field strength.  相似文献   

20.
Recent observations have revealed that damped Lyα clouds (DLAs) host star formation activity. In order to examine if such star formation activity can be triggered by ionization fronts, we perform high-resolution hydrodynamics and radiative transfer simulations of the effect of radiative feedback from propagating ionization fronts on high-density clumps. We examine two sources of ultraviolet (UV) radiation field to which high-redshift ( z ∼ 3) galaxies could be exposed: one corresponding to the UV radiation originating from stars within the DLA, itself, and the other corresponding to the UV background radiation. We find that, for larger clouds, the propagating I-fronts created by local stellar sources can trigger cooling instability and collapse of significant part, up to 85 per cent, of the cloud, creating conditions for star formation in a time-scale of a few Myr. The passage of the I-front also triggers collapse of smaller clumps (with radii below ∼4 pc), but in these cases the resulting cold and dense gas does not reach conditions conducive to star formation. Assuming that 85 per cent of the gas initially in the clump is converted into stars, we obtain a star formation rate of  ∼0.25 M yr−1 kpc−2  . This is somewhat higher than the value derived from recent observations. On the other hand, the background UV radiation which has harder spectrum fails to trigger cooling and collapse. Instead, the hard photons which have long mean free-path heat the dense clumps, which as a result expand and essentially dissolve in the ambient medium. Therefore, the star formation activity in DLAs is strongly regulated by the radiative feedback, both from the external UV background and internal stellar sources and we predict quiescent evolution of DLAs (not starburst-like evolution).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号