首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December–January–February (DJF), March–April–May (MAM), June–July–August (JJA) and September–October–November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14–16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10–18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.  相似文献   

2.
Using digital ionosonde observations at low-latitude station, Delhi (28.6 N, 77.2 E, mag. dip 42.4 N), the diurnal and seasonal variations of the critical frequency of F2 layer (foF2) are analyzed from August 2000 to July 2001 during a high solar activity period. Also, noontime bottomside electron density (Ne-h) profiles, below the F2-peak, are derived from ionogram, using the POLAN (Report UAG-93, WDC-A, for Solar Terrestrial Physics, Boulder, Co.) program during the same period, and these profiles are then normalized to the peak height and density (hmF2, NmF2) of the F2-region. These observations are used to assess the predictability of the International Reference Ionosphere, IRI-2000 model (Radio Sc. 36(2) (2001) 261). Results show in general, a large variability, (1σ, σ is standard deviation), in foF2 during nighttime than daytime during winter and equinox, the variability of foF2 about the mean is about ±25% by night and ±15% by day. The IRI model shows a fairly good agreement with foF2 observations during daytime, however during nighttime, the discrepancies between the two exist. Comparative studies of the normalized observed profiles with those obtained with the IRI model (Bilitza, 2001) using both the options namely: Gulyaeva's (Adv. Space Res. 7 (1987) 39) model and B0-Table (Adv. Space Res. 25(1) (2000) 89), show that during all the seasons, in general, the B0-Tab option, reveals a better agreement with the observations, while the IRI model using Gulyaeva's option, overestimates the electron density distribution during summer and equinox, however, during winter, the model is close to the observations. The comparisons of average profile shape parameters (B0,B1) derived from noontime observed profiles, with those obtained, using B0-Tab option, in the IRI model, show a good agreement during all the seasons. However, B0, B1 obtained, using Gulyaeva's option in the IRI model, show a disagreement with the derived B0, B1 values during all the seasons, except during winter, for B0 parameter.  相似文献   

3.
利用我国9个电离层观测站第21和22太阳周大约20年的foF2月中值数据,分析太阳活动和地磁活动对电离层foF2的影响,结果显示白天和夏季夜间foF2和太阳黑子数R之间存在着明显非线性关系,并且随着纬度的降低逐渐增强.当回归分析加入地磁Ap指数时,多重回归模型与实测值误差进一步减小,说明同时考虑太阳活动和地磁活动的非线性影响能够更好地描述foF2的变化.基于foF2与太阳黑子数R及地磁指数Ap之间的非线性统计关系,利用Fourier级数建立9个单站谱模型,并与国际参考电离层IRI进行了比较,精度有一定提高.  相似文献   

4.
The aim of this paper is to report some periodicities observed in the ionospheric parameter foF2 measured at Tucuman (26.9°S; 65.4°W), station placed near the southern crest of the equatorial anomaly. For that, monthly medians of foF2 at several hours of LT for the period 1958–1987 are used. The data are run with Fast Fourier Transform (FFT). Data gaps (4–5 months) are filled by means of linear interpolation. Several periodicities are present. Besides the solar cycle dominant dependence (11 years), semi-annual, annual, five years and quasi-biennial periodicities are also observed. A marked quasi-biennial periodicity is observed at daytime and nighttime hours being their greater amplitude at local noon and midnight. Different mechanisms or combined effects possibly cause them. It is suggested that the solar activity by means of extreme ultraviolet radiation (EUV), which present a quasi-biennial oscillation (QBO) and it is responsible for the ionization, could be the dominant mechanism for the diurnal quasi-biennial periodicity of foF2. At night, since the photoionization by extreme ultraviolet radiation is not significant and the F2 layer is lower than during daytime (100 km) other mechanism may be operative for the quasi-biennial periodicity observed. Possibly the stratospheric QBO contributes to the modulation of the observed behaviour in foF2 at night. This result is preliminary because it needs to be extended to other stations so as to extract definite conclusions. Moreover, we cannot dismiss the possibility of a combined effect of both these mechanisms mainly at daytime and/or QBO influence of geomagnetic parameters.  相似文献   

5.
6.
We use the measurements of the Jicamarca digisonde to examine the variations in F2 layer peak electron density (NmF2), its height (hmF2), and the F2 layer thickness parameter (B0) near the dip equator. The hourly ionograms during geomagnetic quiet-conditions for a 12-month period close to the maximum solar activity, April 1999–March 2000, are used to calculate the monthly averages of these parameters, for each month. The averages are compared with the International Reference Ionosphere (IRI)-2001 model values. The results show that the higher hmF2 values during daytime, associated with the upward velocity, are mainly responsible for the greater values of NmF2 and B0; while the nighttime lower hmF2, related to the downward velocity, are responsible for the smaller NmF2 and B0. For daytime, hmF2 and NmF2 are correlated with the solar activity in the equinoctial and summer months. The hmF2 and B0 peaks at sunset with an associated sharp decrease in NmF2 are presented in the equinoctial and summer months, but not in the winter months. Comparison of the measured hmF2 values with the International Radio Consultative Committee (CCIR) maps used in IRI-2001 (IRI-CCIR) reveals an IRI overestimate in hmF2 during daytime. The most significant discrepancy is that the IRI-CCIR does not model the post-sunset peak in hmF2. For the NmF2 comparison, the values obtained from both the CCIR and URSI maps are generally close to the observed values. For the B0 comparison, the highest discrepancy between the observation and the Gulyaeva option (IRI-Gulyaeva) is the location of the annual maximum for the daytime values, also the winter daytime predictions are too low. Additionally, the significant negative difference between the observation and the B0-table option (IRI-B0-table) provides a slightly better prediction, except for 0400–1000 LT when the model significantly overestimates. The post-sunset peak in B0 at some months is predicted by neither the IRI-Gulyaeva nor the IRI-B0-table options.  相似文献   

7.
The annual and semi-annual variations of the ionosphere are investigated in the present paper by using the daytime F2 layer peak electron concentration (NmF2) observed at a global ionosonde network with 104 stations. The main features are outlined as follows. (1) The annual variations are most pronounced at magnetic latitudes of 40–60° in both hemispheres, and usually manifest as winter anomalies; Below magnetic latitude of 40° as well as in the tropical region they are much weaker and winter anomalies that are not obvious. (2) The semi-annual variations, which are usually peak in March or April in most regions, are generally weak in the near-pole regions and strong in the far-pole regions of both hemispheres. (3) Compared with their annual components, the semi-annual variations in the tropical region are more significant.In order to explain the above results, we particularly analyze the global atomic/molecular ratio of [O/N2] at the F2 layer peak height by the MSIS90 model. The results show that the annual variation of [O/N2] is closely related with that of NmF2 prevailing in mid-latitudes and [O/N2] annual variation usually may lead to the winter anomalies of NmF2 occurring in the near-pole region. Moreover, NmF2 semi-annual variations appearing in the tropical region also have a close relationship with the variation of [O/N2]. On the other hand, the semi-annual variations of NmF2 in the far-pole region cannot be simply explained by that of [O/N2], but the variation of the solar zenith angle may also have a significant contribution.  相似文献   

8.
利用1988~1999年欧洲非相干散射EISCAT(European Incoherent Scatter)雷达观测数据,对不同太阳活动周相、不同季节的极光椭圆区电离层F区电子密度进行统计分析,研究其气候学特征,并与IRI 2001模式比较.EISCAT观测到的电子密度显示出显著的太阳活动高年“冬季异常”和太阳活动低年半年变化等现象.EISCAT实测电子密度随时间和高度的平均二维分布和500 km高度以下总电子含量TEC,从总体来看与IRI 2001模式预测结果符合较好.但高年在TEC达到最大值前后,IRI 2001模式预测的电子密度高度剖面与EISCAT观测结果有显著差别:F2峰以上IRI 2001模式预测的电子密度过大,造成TEC明显高于雷达观测值.另外,在太阳活动下降相,EISCAT观测显示出明显的半年周期季节变化特征,但IRI 2001模式未能预测出此下降相季节变化.  相似文献   

9.
This paper deals with the diurnal and seasonal variations of height of the peak electron density of the F2-layer (hmF2) derived from digital ionosonde measurements at a low–middle-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N). Diurnal and seasonal variations of hmF2 are examined and comparisons of the observations are made with the predictions of the International Reference Ionosphere (IRI-2001) model. Our study shows that during both the moderate and low solar activity periods, the diurnal pattern of median hmF2 reveals a more or less similar trend during all the seasons with pre-sunrise and daytime peaks during winter and equinox except during summer, where the pre-sunrise peak is absent. Comparison of observed median hmF2 values with the IRI during moderate and low solar activity periods, in general, reveals an IRI overestimation in hmF2 during all the seasons for local times from about 06 LT till midnight hours except during summer for low solar activity, while outside this time period, the observed hmF2 values are close to the IRI predictions. The hmF2 representation in the IRI model does not reproduce pre-sunrise peaks occurring at about 05 LT during winter and equinox as seen in the observations during both the solar activity periods. The noontime observed median hmF2 values increase by about 10–25% from low (2004–2005) to high solar activity (2001–2002) during winter and equinox, while the IRI in the same time period and seasons shows an increase of about 10–20%. During summer, however, the observed noontime median hmF2 values show a little increase with the solar activity, as compared to the IRI with an increase of about 12%.  相似文献   

10.
In this paper, we report the results of our comparison study between satellite measurements and the International Reference Ionosphere (IRI) model on the seasonal and longitudinal changes of the low-latitude nighttime topside ionosphere during the period of solar maximum from June 2000 to July 2001. Satellite measurements were made by KOMPSAT-1 and DMSP F15 at 685 km altitude and 840 km altitude, respectively. The results show that the IRI2001 model gives reasonable density estimations for the summer hemisphere and the March equinox at both altitudes. However, the observed wintertime densities are smaller than the predictions of the IRI2001 model, especially at a higher (840 km) altitude, manifesting strong hemispheric asymmetries. The observed electron temperatures generally reside between the two estimations of IRI2001, one based on the Aeros–ISIS data and the other based on Intercosmos, and the latter estimation better represents the observations. With more or less monotonic increase with latitude, the temperature profiles of the IRI2001 model do not predict the enhancement seen around 15° magnetic latitude of the winter hemisphere. Longitudinal variation, probably caused by the zonal winds, is seen in all seasons at both altitudes, while the IRI2001 model does not show a large variation. The observed density and temperature show significant changes according to the F10.7 values in the whole low-latitude region from 40°S to 40°N geomagnetic latitude. The effect is manifested as increases in the density and temperature, but not in the hemispheric asymmetry or in the longitudinal variation.  相似文献   

11.
This paper investigates the features of pre-earthquake ionospheric anomalies in the total electron content (TEC) data obtained on the basis of regular GPS observations from the International GNSS Service (IGS) network. For the analysis of the ionospheric effects of the 26 September 2005 Peru earthquake, Global Ionospheric Maps (GIMs) of TEC were used. The possible influence of the earthquake preparation processes on the main low-latitude ionosphere peculiarity—the equatorial anomaly—is discussed. Analysis of the TEC maps has shown that modification of the equatorial anomaly occurred a few days before the earthquake. In previous days, during the evening and night hours (local time—LT), a specific transformation of the TEC distribution had taken place. This modification took the shape of a double-crest structure with a trough near the epicenter, though usually in this time the restored normal latitudinal distribution with a maximum near the magnetic equator is observed. Additional measurements (CHAMP satellite) have also confirmed the presence of this structure. To compare the vertical TEC measurements obtained with GPS satellite signals (GPS TEC), the International Reference Ionosphere, IRI-2001, was used for calculating the IRI TEC.  相似文献   

12.
We have modelled the effects of changes in the Earth's magnetic field on the ionosphere as have occurred from 1957 to 1997 using the NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model. Previous studies that attempted to quantify these effects used a constant wind field, so that any electro-dynamical coupling processes could not be accounted for. Using TIE-GCM we can account for these processes. We find substantial changes in the F2 layer peak height hmF2 (up to ±20 km) and critical frequency foF2 (up to ±0.5 MHz) over the Atlantic Ocean and South America, purely due to changes in the Earth's magnetic field (i.e. unrelated to greenhouse gas cooling effects, which are often held responsible for long-term trends in hmf2 and fof2). These would make up a significant contribution to observed long-term trends in these areas and therefore must be taken into account in their interpretation. Modelled trends of hmF2 and foF2 exhibit a strong seasonal and diurnal variation, highlighting the importance of separating data with respect to season and local time. Most of the modelled changes in hmF2 and foF2 can be related to changes in plasma transport up or down magnetic field lines driven by neutral winds, changes, which are mostly caused by changes in the inclination of the field, though changes in declination and neutral wind also play a role. Changes in the vertical component of the E×B drift seem to have little effect on hmF2 and foF2.  相似文献   

13.
The foF2 data obtained at Alma-Ata and Observatorio Del Ebro during the winter/spring of 2003–2004 are analyzed to compare and investigate the upper ionosphere variability at the two selected sites. The geomagnetic activity and the middle stratosphere dynamics, involving planetary wave (PW) activity, are analyzed for understanding the physical conditions and processes that can explain the observed ionospheric variability. By applying the same method of wavelet analysis to the data sets and doing a direct comparison of the results, two types of foF2 disturbances were found. The first type is 2–7-day oscillations, which appeared during periods of increased geomagnetic activity. The second type is oscillations arising from PW activity in the lower atmosphere. These consist of (1) 6–11-day oscillations arising from PW activity in lower atmospheric regions developed during the final stratosphere warming and indicating the timing of the transition from the winter to the summer circulation and (2) 9–13-day and 8–10-day oscillations mostly during the quiet level of geomagnetic activity, indicating a likely close relation with those in the geopotential height at the 1 hPa level for westward-propagating waves at 40°N, which strengthened during stratosphere warming events in January 2004. The time delay of the oscillations in the ΔfoF2 with respect to those in the geopotential height is about 10 days and it seems that the assumed ionosphere response can occur under weakened eastward zonal wind or relatively weak westward zonal wind (V<30 m s−1).  相似文献   

14.
In this paper we analyze the greatest plasma frequency, foF2, named critical frequency, observed by the Chung-Li ionosonde (25.0°N, 121.l°E) during the period of the Chi-Chi (23.87°N, 1 20.75°E) and the Chia-Yi (23.51°E, 120.4°E) earthquakes. The previous 15-day running mean and the associated standard deviation are utilized to construct the upper or lower bound for detecting the seismo-ionospheric perturbations. It is found that the perturbation appeals in 3–4 days prior to the Chi-Chi earthquake as well as 1–3 days prior to the Chia-Yi earthquake.  相似文献   

15.
Arecibo (18.4 N, 66.7 W) incoherent scatter (IS) observations of electron density N(h) are compared with the International Reference Ionosphere (IRI-95) during midday (10/14 h), for summer, winter and equinox, at solar maximum (1981). The N(h) profiles below the F2 peak, are normalized to the peak density NmF2 of the F region and are then compared with the IRI-95 model using both the standard B0 (old option) and the Gulyaeva-B0 thickness (new option). The thickness parameter B0 is obtained from the observed electron density profiles and compared with those obtained from the IRI-95 using both the options. Our studies indicate that during summer and equinox, in general, the values of electron densities at all the heights given by the IRI model (new option), are generally larger than those obtained from IS measurements. However, during winter, the agreement between the IRI and the observed values is reasonably good in the bottom part of the F2 layer but IRI underestimates electron density at F1 layer heights. The IRI profiles obtained with the old option gives much better results than those generated with the new option. Compared to the observations, the IRI profiles are found to be much thicker using Gulyaeva-B0 option than using standard B0.  相似文献   

16.
Model results for the ionospheric E region: solar and seasonal changes   总被引:5,自引:0,他引:5  
A new, empirical model for NO densities is developed, to include physically reasonable variations with local time, season, latitude and solar cycle. Model calculations making full allowance for secondary production, and ionising radiations at wavelengths down to 25 Å, then give values for the peak density N mE that are only 6% below the empirical IRI values for summer conditions at solar minimum. At solar maximum the difference increases to 16%. Solar-cycle changes in the EUVAC radiation model seem insufficient to explain the observed changes in N mE, with any reasonable modifications to current atmospheric constants. Hinteregger radiations give the correct change, with results that are just 2% below the IRI values throughout the solar cycle, but give too little ionisation in the E-F valley region. To match the observed solar increase in N mE, the high-flux reference spectrum in the EUVAC model needs an overall increase of about 20% (or 33% if the change is confined to the less well defined radiations at <150 Å). Observed values of N mE show a seasonal anomaly, at mid-latitudes, with densities about 10% higher in winter than in summer (for a constant solar zenith angle). Composition changes in the MSIS86 atmospheric model produce a summer-to-winter change in N mE of about–2% in the northern hemisphere, and +3% in the southern hemisphere. Seasonal changes in NO produce an additional increase of about 5% in winter, near solar minimum, to give an overall seasonal anomaly of 8% in the southern hemisphere. Near solar maximum, reported NO densities suggest a much smaller seasonal change that is insufficient to produce any winter increase in N mE. Other mechanisms, such as the effects of winds or electric fields, seem inadequate to explain the observed change in N mE. It therefore seems possible that current satellite data may underestimate the mean seasonal variation in NO near solar maximum. A not unreasonable change in the data, to give the same 2:1 variation as at solar minimum, can produce a seasonal anomaly in NmE that accounts for 35–70% of the observed effect at all times.  相似文献   

17.
Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6–8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics (51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N, 77.0°E). Observations of the O (557.7 and 630.0 nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250 km were carried out at Irkutsk and of the O2(b1g+X3g) (0-1) emission originating from an atmospheric layer centered at altitude of 94 km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1 h and a wave front width of no less than 5000 km, while it traveled equatorward with a velocity of 200 m/s from 62°N to 38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630 nm emissions in the frequency range 0.4–4 mHz (250–2500 s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.  相似文献   

18.
The GPS-derived total electron content (TEC) and NmF2 are measured at the Chung-Li ionosonde station (24.9°N, 121°E) in order to study the variations in slab thickness (τ) of the ionosphere at low-latitudes ionosphere during 1996–1999, corresponding to half of the 23rd solar cycle. This study presents the diurnal, seasonal, and solar flux variations in τ for different solar phases. The seasonal variations show that the average daily value is greater during summer and the reverse is true during equinox in the equatorial ionization anomaly (EIA) region. Moreover, the τ values are greater during the daytime (0800–1600 LT) and nighttime (2000–0400 LT) for summer and winter, respectively. The diurnal variation shows two abnormal peaks that appear during the pre-sunrise and post-sunset hours. The peak values decrease as the sunspot number increases particularly for the pre-sunrise peak. Furthermore, the variation in the F-peak height (hpF2) indicates that a thermospheric wind toward the equator leads to an increase in hpF2 and an enhancement in τ during the pre-sunrise period. Furthermore, the study shows the variations of τ values for different geophysical conditions such as the geomagnetic storm and earthquake. A comprehensive discussion about the relation between τ and the geophysical events is provided in the paper.  相似文献   

19.
The variability of foF2 in different phases of solar cycle 23   总被引:1,自引:0,他引:1  
In this paper we examined the variations of the foF2 with solar activity for different local time and different seasons. Beside this we evaluated International Reference Ionosphere (IRI) models at different phases of solar cycle 23, different latitudes and different local time. We studied F2 layer critical frequency (foF2) of the ionosphere by using the flare index calculated by the Kandilli Observatory. For this purpose, we identified the months similar with high flare activity during the solar cycle 23. We chose 6 months which represented the different phases (ascending branch, maximum and descending branch) of the solar cycle. We also took into account the fact that these months were in different seasons. The hourly monthly means of observed foF2 data from four ionosonde stations for 6 months were calculated. On the other hand, the identical foF2 values of the same months were calculated for the year 1996, which is the minimum year of the previous solar activity cycle. We subtracted the foF2 values of 1996 from the values of the selected months of the last solar cycle to obtain the residuals, Δ(foF2). Then the magnitude of the residuals is compared through the cycle. We used IRI-2007 as well as IRI-2001 models to see the degree of deviation of the observed results from the predicted ones. We found that the predicted values of the ΔfoF2, which are calculated by the IRI-2007, fitted well with the observed Δ(foF2) and showed that the Δ(foF2) are dependent on the solar cycle variations in general.  相似文献   

20.
Variations of the upper boundary of the ionosphere (UBI) are investigated based on three sources of information: (i) ionosonde-derived parameters: critical frequency foF2, propagation factor M3000F2, and sub-peak thickness of the bottomside electron density profile; (ii) total electron content (TEC) observations from signals of the Global Positioning System (GPS) satellites; (iii) model electron densities of the International Reference Ionosphere (IRI*) extended towards the plasmasphere. The ionospheric slab thickness is calculated as ratio of TEC to the F2 layer peak electron density, NmF2, representing a measure of thickness of electron density profile in the bottomside and topside ionosphere eliminating the plasmaspheric slab thickness of GPS-TEC with the IRI* code. The ratio of slab thickness to the real thickness in the topside ionosphere is deduced making use of a similar ratio in the bottomside ionosphere with a weight Rw. Model weight Rw is represented as a superposition of the base-functions of local time, geomagnetic latitude, solar and magnetic activity. The time-space variations of domain of convergence of the ionosphere and plasmasphere differ from an average value of UBI at ∼1000 km over the earth. Analysis for quiet monthly average conditions and during the storms (September 2002, October–November 2003, November 2004) has shown shrinking UBI altitude at daytime to 400 km. The upper ionosphere height is increased by night with an ‘ionospheric tail’ which expands from 1000 km to more than 2000 km over the earth under quiet and disturbed space weather. These effects are interposed on a trend of increasing UBI height with solar activity when both the critical frequency foF2 and the peak height hmF2 are growing during the solar cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号