首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone.Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55–61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted.The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to undercooling phenomena that suggest smaller T. Vertical compositional zonation in magma chambers has been documented through study of products of voluminous pyroclastic eruptions. Magmatic inclusions in volcanic rocks provide evidence for compositional zonation and mixing processes in igneous systems when only lava is erupted.  相似文献   

2.
The Granada ignimbrite, an Upper Miocene volcanic unit from the northern Puna, previously has been interpreted as an extensive ignimbrite (>2300 km2) associated with eruptions from the Vilama caldera (trap-door event). On the basis of new data, we revise its correlation and redefine the unit as a compound, high aspect ratio ignimbrite, erupted at approximately 9.8 Ma. Calculated volumes (100 km3) are only moderate in comparison with other large volume (>1000 km3) ignimbrites that erupted approximately 2–6 m.y. later in the region (e.g. Vilama, Panizos, Atana). Six new volcanic units are recognized from sequences previously correlated with Granada (only one sourced from the same center). Consequently, the area ascribed to the Granada ignimbrite is substantially reduced (630 km2), and links to the Vilama caldera are not supported. Transport directions suggest the volcanic source for the Granada ignimbrite corresponds to vents buried under younger (7.9–5 Ma) volcanic rocks of the Abra Granada volcanic complex. Episodes of caldera collapse at some stage of eruption are likely, though their nature and timing cannot be defined from available data. The eruption of the Granada ignimbrite marks the onset of a phase of large volume (caldera-sourced) volcanism in the northern Puna.  相似文献   

3.
The Middle Jurassic Mirdita Ophiolite in northern Albania is part of an ophiolite belt occurring between the Apulian and Pelagonian subcontinents in the Balkan Peninsula. The upper mantle and crustal units of the Mirdita Ophiolite show major changes in thickness, rock types, and chemical compositions from west to east as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The  3–4-km-thick Western Mirdita Ophiolite (WMO) includes lherzolite–harzburgite, plagioclase–lherzolite, plagioclase–dunite in its upper mantle units and a plutonic complex composed of olivine gabbro, troctolite, ferrogabbro, and gabbro. These peridotites and gabbroic rocks are overlain directly by a  600-m-thick extrusive sequence containing basaltic pillow lavas and hyaloclastites. Sheeted dikes are rare in the WMO. The  12-km-thick Eastern Mirdita Ophiolite (EMO) includes tectonized harzburgite and dunite with extensive chromite deposits, as well as ultramafic cumulates including olivine clinopyroxenite, wehrlite, olivine websterite, and dunite forming a transitional Moho with the overlying lower crustal section. The plutonic rocks are made of pyroxenite, gabbronorite, gabbro, amphibole gabbro, diorite, quartz diorite, and plagiogranite. A well-developed sheeted dike complex has mutually intrusive relations with the underlying isotropic gabbros and plagiogranites and feeds into the overlying pillow lavas. Dike compositions change from older basalt to basaltic andesite, andesite, dacite, quartz diorite, to late-stage andesitic and boninitic dikes as constrained by crosscutting relations. The  1.1-km-thick extrusive sequence comprises basaltic and basaltic andesitic pillow lavas in the lower 700 m, and andesitic, dacitic and rhyodacitic massive sheet flows in the upper 400 m. Rare boninitic dikes and lavas occur as the youngest igneous products within the EMO. The basaltic and basaltic andesitic rocks of the WMO extrusive sequence display MORB affinities with Ti and Zr contents decreasing upsection (TiO2 = 3.5–0.5%, Zr = 300–50 ppm), while Nd(T) (+ 8 to + 6.5) varies little. These magmas were derived from partial melting of fertile MORB-type mantle. Fractional crystallization was important in the evolution of WMO magmas. The low Ti and HREE abundances and Cs and Ba enrichments in the uppermost basaltic andesites may indicate an increased subduction influence in the evolution of the late-stage WMO magmas. Basaltic andesites in the lower 700 m of the EMO volcanic sequence have lower TiO2 ( 0.5%) and Zr ( 50 ppm) contents but Nd(T) values (+ 7 to + 6.5) are similar to those of the WMO lavas. These rocks show variable enrichment in subduction-enriched incompatible elements (Cs, Ba, Th, U, LREE). The basaltic andesites through dacites and boninites within the upper 400 meters of EMO lavas show low TiO2 ( 0.8–0.3%) and Nd(T) (+ 6.5 to + 3.0). The mantle source of these rocks was variably enriched in Th by melts derived from subducted sediments as indicated by the large variations in Ba, K, and Pb contents. EMO boninitic dikes and lavas and some gabbroic intrusions with negative Nd (T) values (− 1.4 and − 4.0, respectively) suggest that these magmas were produced from partial melting of previously depleted, ultra-refractory mantle. The MORB to SSZ transition (from west to east and stratigraphically upwards in the Mirdita Ophiolite and the progression of the Nd(T) values from + 8.0 to − 4.0 towards the east resulted from an eastward shift in protoarc–forearc magmatism, keeping pace with slab rollback in this direction. The mantle flow above the retreating slab and in the arc-wedge corner played a major role in the evolution of the melting column, in which melt generation, aggregation/mixing and differentiation occurred at all levels of the sub-arc/forearc mantle. The SSZ Mirdita Ophiolite evolved during the intra-oceanic collapse and closure of the Pindos marginal basin, which had a protracted tectonic history involving seafloor spreading, protoarc rifting, and trench-continent collision.  相似文献   

4.
塔里木溢流玄武岩的喷发特征   总被引:5,自引:3,他引:2  
上官时迈  田伟  徐义刚  关平  潘路 《岩石学报》2012,28(4):1261-1272
通过对柯坪地区二叠系野外火山岩露头剖面和英买力、哈拉哈塘井区二叠系火山岩钻井剖面的对比,将塔里木早二叠世溢流玄武岩划分为三个旋回,从老到新依次是:库普库兹满溢流玄武岩旋回(KP),长英质火山碎屑岩旋回(FP)和开派兹雷克溢流玄武岩旋回(KZ)。KP旋回以巨厚溢流玄武岩夹凝灰岩为特征,在柯坪露头区和英买力井区均可划分出三层巨厚玄武质熔岩流,至哈拉哈塘井区减少为一层玄武岩流,但长英质火山碎屑岩和熔岩厚度增加。FP旋回在柯坪露头区自下而上包括空落相凝灰岩,熔结凝灰岩,再沉积火山碎屑岩和正常碎屑岩夹火山灰层,该层可与英买力及哈拉哈塘井区的凝灰岩层对比,表明在塔北存在一期面积广泛的长英质火山喷发。KZ旋回以溢流玄武岩为主,在开派兹雷克剖面识别出四期喷发共8层溢流玄武岩和一期安山质玄武岩,每期喷发之间夹少量碎屑岩,但未见长英质火山碎屑岩夹层,该特征与英买力和哈拉哈塘井区的火山层序组合不同,而与塔中溢流玄武岩类似。三个火山旋回的划分表明塔里木大火成岩省经历了"基性溢流玄武岩-酸性火山碎屑岩-基性溢流玄武岩"的演变过程,与Afro-Arabian溢流玄武岩省相似,可进行对比研究。  相似文献   

5.
Quaternary monogenetic volcanism in the High Cascades of Oregonis manifested by cinder cones, lava fields, and small shields.Near Crater Lake caldera, monogenetic lava compositions include:low-K (as low as 0?09% K2O) high-alumina olivine tholeiite (HAOT);medium-K. calc-alkaline basalt, basaltic andesite, and andesite;and shoshonitic basaltic andesite (2?1% K2O, 1750 ppm Sr at54% SiO2). Tholeiites have MORB-like trace element abundancesexcept for elevated Sr, Ba, and Th and low high field strengthelements (HFSE), and they represent near-primary liquids. Theyare similar to HAOTs from the Cascades and adjacent Basin andRange, and to many primitive basalts from intraoceanic arcs.Calc-alkaline lavas show a well-developed arc signature of highlarge-ion lithophile elements (LILE) and low HFSE. Their Zrand Hf concentrations are at least partly decoupled from thoseof Nb and Ta; HREE are low relative to HAOT. Incompatible elementabundances and ratios vary widely among basaltic andesites.Some calc-alkaline lavas vented near Mount Mazama contain abundantgabbroic microxcnoliths, and are basaltic andesitic magmas contaminatedwith olivine gabbro. A calc-alkaline basalt and a few basaltic andesites have MgOand compatible trace element contents that suggest only minorfractionation. There appears to be a compositional continuumbetween primitive tholeiitic and calc-alkaline lavas. Compositionalvariation within suites of comagmatic primitive lavas, boththoleiitic and calc-alkaline, mainly results from differentdegrees of partial melting. Sources of calc-alkaline primarymagmas were enriched in LILE and LREE by a subduction componentand contained residual garnet, whereas sources of HAOTs hadlower LILE and LREE concentrations and contained residual clinopyroxene.High and variable LILE and LREE contents of calc-alkaline lavasreflect variations in fluid-transported subduction componentadded to the mantle wedge, degree of partial melting, and possiblyalso interaction with rocks or partial melts in the lower crust. Andesites were derived from calc-alkaline basaltic andesitesby fractionation of plagioclase+augite+magnetite+apatite ? orthopyroxeneor olivine, commonly accompanied by assimilation. Many andesitesare mixtures of andesitic or dacitic magma and a basaltic orbasaltic andesitic component, or are contaminated with gabbroicmaterial. Mingled basalt, andesite, and dacite of Williams Craterformed by multi-component, multi-stage mixing of basaltic andesiticmagma, gabbro, and dacitic magma. The wide range of compositionsvented from monogenetic volcanoes near Crater Lake is a resultof the thick crust coupled with mild tectonic extension superimposedon a subduction-related magmatic arc.  相似文献   

6.
通过大比例尺野外岩性岩相填图、掌子面二维岩性岩相描述和详细岩矿鉴定,研究营城组三段内幕。本区营三段自下而上岩性序列表现为2个中基性到中酸性的火山岩旋回:①下部为石英安山岩、安山岩、安山质集块熔岩、安山质集块岩、安山质角砾岩和安山质角砾凝灰岩,向上过渡为砂质凝灰岩和英安质凝灰熔岩;②上部为玄武安山岩和玄武质集块熔岩,向上过渡为英安岩、珍珠岩、英安岩、英安质凝灰熔岩、英安质沉凝灰岩和英安岩。旋回①岩相纵向序列:溢流相下部亚相、火山通道相火山颈亚相、爆发相空落亚相、火山沉积相再搬运亚相、爆发相热碎屑流亚相。旋回②岩相纵向序列:溢流相上部亚相和下部亚相、火山通道相火山颈亚相、溢流相下部亚相、侵出相内带亚相、溢流相下部亚相、爆发相热碎屑流亚相、火山沉积相再搬运亚相、溢流相下部亚相。营三段火山岩发育于松辽盆地断陷末期,是盆地断陷转为坳陷过程的重要岩石记录。  相似文献   

7.
Well Drilling shows that the volcanic rocks from the Carboniferous Batamayineishan Formation in the Eastern Junggar basin are mainly composed of volcaniclastic rocks (av. 52%) and volcanic lavas (32%), with a small amount of volcanic pyroclastic lavas (av. 11%). The volcanic lavas are basalt‐basaltic andesite‐andesite‐dacite assemblage. The LA‐ICP‐MS zircon U‐Pb dating of the andesite and the dacite yielded 325~321 Ma and 310 Ma ages, respectively, which is of high agreement with the published age (300 Ma) of basalts from this Formation, it is implied that an important volcanic activity occurred in Junggar basin in the late Carboniferous. The lavas have low TiO2 and high Na2O, indicating a calc‐alkaline series. Geochemical data show that they are characterized by LREE‐enriched patterns with slightly negative Eu anomalies. The rocks have high large ion lithophile element (LILE), and low high field strength element (HFSE) concentrations, with strong negative Nb, Ta and Ti anomalies. From basic through intermediate to felsic, the depletions in Sr, Ti and P of the studied volcanic rocks increase gradually. These geochemical characteristics indicate that the volcanic rocks are magmatic evolution products attributed to partial melting of mantle‐derived spinelle lherzolite related to oceanic subduction in an island‐arc setting. In combination with the LA‐ICP‐MS zircon U‐Pb dating, it is inferred that subduction of the Junggar Ocean in eastern Junggar basin lasted to the Late Carboniferous. Consequently, the final closure of the Junggar Ocean occurred most likely after 310 Ma.  相似文献   

8.
Puyehue Volcano (40?5?S) in the southern volcanic zone (33?–46?)of the Andes is a largely basaltic stratovolcano constructedon a highly eroded, dominantly andesitic volcanic center. Duringgrowth of Puyehue Volcano there was a trend from basaltic tomore siliceous lavas, and the most recent eruptions (1921–22,1960) are Cordon Caulle rhyodacites and rhyolites erupted fromfissures northwest of the volcano. These basaltic through rhyoliticlavas define a medium-K2O suite of tholeiitic affinity withtrace element and Pb-isotopic signatures typical of volcanicrocks associated with subduction zones. Most of the evolved lavas, ranging from andesite to rhyolite,formed by low to moderate pressure ( 5 kb) fractional crystallizationof a plagioclase-dominated anhydrous assemblage. Magma mixingproduced aphyric basaltic andesites with anomalously high incompatibleelement contents and latestage andesites with disequilibriumphenocryst assemblages. The age progression from abundant basaltto younger, less voluminous, more silicic lavas reflects increasinglygreater degrees of fractional crystallization which caused theapparent compositional gap between mixing end members to widen. There is no evidence in the silicic lavas for assimilation ofgeochemically distinctive continental crust. Puyehue basaltsare surprisingly more heterogeneous in 87Sr/86Sr (0?70378–0?70416)and incompatible element abundance ratios (e.g., La/Sm, Ba/Nb)than the more evolved lavas. This geochemical variability mayreflect subcrustal source heterogeneities or contamination bylower crust. The older basaltic andesites and andesites underlyingthe Puyehue edifice have Sr and Nd isotopic ratios and incompatibleelement abundance ratios within the range of Puyehue basalts.Apparently, similar sources and processes were involved in theirgenesis.  相似文献   

9.
The Middle‐Upper Miocene Bodrum magmatic complex of the Aegean region, southwestern Turkey, is mainly represented by intermediate stocks, lavas, pyroclastic and volcaniclastic deposits. Monzonitic stocks and connected porphyry intrusions and extrusions are the first products of the magmatism. These are followed by a volcanic succession consisting of andesitic‐latitic lavas, autobrecciated lavas, pyroclastic and volcaniclastic deposits. The final stage is represented by basaltic and basaltic andesitic flows and dykes intruded into previous units. The volcanic succession crops out in the northern part of the Bodrum peninsula. In the lower part of this succession are widespread pyroclastic deposits, composed of pyroclastic fall and flow units, alternating with epiclastic deposits. Grain size, volume and thickness of the pyroclastic deposits were mainly controlled by the type, magnitude and intensity of the eruption. Further up the section, there are two horizons of debris avalanche deposits forming the coarsest and thickest deposits of the volcaniclastic succession. The debris avalanche deposits indicate at least two different flank collapses coeval with the volcanism. The stratigraphy and map pattern of these volcanic units imply that the northern part of the Bodrum peninsula was the north‐facing flank of a stratovolcano during the mid‐Late Miocene. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.

The volcanic rocks of the Colíder and Roosevelt formations are extensively exposed in the south-central portion of the Amazonian Craton where effusive and pyroclastic rocks have been mapped. Both units, topped by chemical sediments and oceanic facies as rhyolite and andesite lavas, rhyodacite, and porphyritic dacite, with frequent intercalations of pyroclastic and epiclastic deposits. Whole-rock geochemistry for 55 samples of rhyolitic to andesitic composition suggests the involvement of fertile mantle-derived components with E-MORB to OIB compositions. The analyzed rocks display calc-alkaline to shoshonitic affinity consistent with generation related to an active continental margin. The whole-rock Sm-Nd isotope data from selected felsic volcanic rocks of the Colíder and Roosevelt formations yield negative initial εNd values between –3 and –9, indicating the predominantly crustal nature of the parental magmas with early Archean to late Paleoproterozoic (ca. 2.5–2.0 Ga) depleted mantle model ages.

  相似文献   

11.
Fluorine contents in 38 Quaternary volcanic rocks, representing calc-alkaline andesite eruptive groups from the Garibaldi Lake area, were determined by a selective ion-electrode method. A close relationship is evident between F abundance and the type of ferromagnesian phenocrysts present in the andesitic rocks. Hypersthene andesites have the lowest F contents (142–212 ppm), whereas hornblende-biotite andesites exhibit the highest F values (279–368 ppm); hornblende andesites have intermediate F contents (238–292 ppm). The hornblende-free Desolation Valley basaltic andesite has a lower F content than the hornblende-bearing Sphinx Moraine basaltic andesite (122 ppm versus 317–333 ppm).Different eruptive suites can be grouped on the basis of F differentiation patterns into (1) a hornblende-free lava series in which the F content of basaltic andesite is less than that of andesite, and (2) a hornblende-bearing lava series in which F contents remain constant or decrease slightly from basaltic andesite through dacite. Fluorine variation in the former series was controlled largely by fractionation of anhydrous minerals, whereas that in the latter was influenced by crystallization of amphibole, biotite and apatite.The distinctive F variation patterns of the two lava series appear to represent real differences in the volatile contents of Garibaldi Lake magmas. These different volatile concentrations may reflect varying degrees of magma-wallrock interaction, differences in the initial volatile contents of the primary magmas, or some combination of these factors.  相似文献   

12.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   

13.
In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage.The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE–SSW direction (∼N10°).The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188–178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.  相似文献   

14.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

15.
The Trooper Creek Formation is a mineralised submarine volcano‐sedimentary sequence in the Cambro‐Ordovician Seventy Mile Range Group, Queensland. Most of the Trooper Creek Formation accumulated in a below‐storm‐wave‐base setting. However, microbialites and fossiliferous quartz‐hematite ± magnetite lenses provide evidence for local shoaling to above fairweather wave‐base (typically 5–15 m). The microbialites comprise biogenic (oncolites, stromatolites) and volcanogenic (pumice, shards, crystal fragments) components. Microstructural elements of the bioherms and biostromes include upwardly branching stromatolites, which suggest that photosynthetic microorganisms were important in constructing the microbialites. Because the microbialites are restricted to a thin stratigraphic interval in the Trooper Creek area, shallow‐water environments are interpreted to have been spatially and temporarily restricted. The circumstances that led to local shoaling are recorded by the enclosing volcanic and sedimentary lithofacies. The microbialites are hosted by felsic syneruptive pumiceous turbidites and water‐settled fall deposits generated by explosive eruptions. The microbialite host rocks overlie a thick association (≤?300 m) of andesitic lithofacies that includes four main facies: coherent andesite and associated autoclastic breccia and peperite; graded andesitic scoria breccia (scoriaceous sediment gravity‐flow deposits); fluidal clast‐rich andesitic breccia (water‐settled fall and sediment gravity‐flow deposits); and cross‐stratified andesitic sandstone and breccia (traction‐current deposits). The latter three facies consist of poorly vesicular blocky fragments, scoriaceous clasts (10–90%), and up to 10% fluidally shaped clasts. The fluidal clasts are interpreted as volcanic bombs. Clast shapes and textures in the andesitic volcaniclastic facies association imply that fragmentation occurred through a combination of fire fountaining and Strombolian activity, and a large proportion of the pyroclasts disintegrated due to quenching and impacts. Rapid syneruptive, near‐vent aggradation of bombs, scoria, and quench‐fragmented clasts probably led to temporary shoaling, so that subsequent felsic volcaniclastic facies and microbialites were deposited in shallow water. When subsidence outpaced aggradation, the depositional setting at Trooper Creek returned to being relatively deep marine.  相似文献   

16.
Hekla volcano is a major producer of large, widespread silicic tephras. About 3000 years ago, the dominant eruption mode shifted from infrequent large (>1 km3) to more frequent moderate (<1 km3) eruptions. In the following two millennia ≥20 explosive silicic-to-intermediate eruptions occurred, and six or more basaltic. Three categories can be identified with dacite/andesite to basaltic andesite in the oldest eruptions through basaltic andesite to basalt in the youngest eruptions. Ten tephra layers of the first category have distinct field characteristics: a pale lower unit and a dark upper unit (two coloured or TC-layers). Colour separation is sharp indicating a stratified magma chamber origin. The lower unit is dominantly andesitic (61–63% SiO2), while the upper unit is basaltic andesite (53–57% SiO2). Volumes of the eight largest TC-layers range from 0.2 to 0.7 km3 as freshly fallen. Radiocarbon and soil accumulation rate dates constrain the TC-layers to between 3000 and 2200 years ago. Two of these (~2890 and ~2920 b2k) are likely to occur overseas. Low SiO2 in the last erupted tephra of the TC-layers is comparable to that of historical Hekla lavas, implying a final effusive phase. The Hekla edifice may, consequently, be younger than 3000 years.  相似文献   

17.
The Irruputuncu is an active volcano located in northern Chile within the Central Andean Volcanic Zone (CAVZ) and that has produced andesitic to trachy-andesitic magmas over the last ∼258 ± 49 ka. We report petrographical and geochemical data, new geochronological ages and for the first time a detailed geological map representing the eruptive products generated by the Irruputuncu volcano. The detailed study on the volcanic products allows us to establish a temporal evolution of the edifice. We propose that the Irruputuncu volcanic history can be divided in two stages, both dominated by effusive activity: Irruputuncu I and II. The oldest identified products that mark the beginning of Irruputuncu I are small-volume pyroclastic flow deposits generated during an explosive phase that may have been triggered by magma injection as suggested by mingling features in the clasts. This event was followed by generation of large lava flows and the edifice grew until destabilization of its SW flank through the generation of a debris avalanche, which ended Irruputuncu I. New effusive activity generated lavas flows to the NW at the beginning of Irruputuncu II. In the meantime, lava domes that grew in the summit were destabilized, as shown by two well-preserved block-and-ash flow deposits. The first phase of dome collapse, in particular, generated highly mobile pyroclastic flows that propagated up to ∼8 km from their source on gentle slopes as low as 11° in distal areas. The actual activity is characterized by deposition of sulfur and permanent gas emissions, producing a gas plume that reaches 200 m above the crater. The maximum volume of this volcanic system is of ∼4 km3, being one of the smallest active volcano of Central Andes.  相似文献   

18.
对升平气田白垩系营城组火山岩岩石学与物性特征、储集空间类型及其形成和演化等研究结果表明,火山岩岩石类型主要有火山碎屑岩、火山熔岩和沉火山岩,以流纹岩为主,少量英安岩、安山岩。火山岩气藏储集空间以次生溶孔(洞)为主,其次为原生孔隙和裂缝。火山岩的演化过程可划分为前期和后期两个阶段。前期阶段以火山自身活动为主,主要形成气孔和火山角砾间孔为主的原生孔隙;后期阶段包括火山熔岩的冷凝作用与火山岩的后生成岩作用,是火山岩储集空间形成的主要时期。研究区风化剥蚀面、断层与裂缝是天然气成藏的主要运移通道,也是有利的储集空间。  相似文献   

19.

The Middle Devonian to Early Carboniferous Campwyn Volcanics of coastal central Queensland form part of the fore‐arc basin and eastern flank of the volcanic arc of the northern New England Fold Belt. They consist of a complex association of pyroclastic, hyaloclastic and resedimented, texturally immature volcaniclastic facies associated with shallow intrusions, lavas and minor limestone, non‐volcanic siliciclastics and ignimbrite. Primary igneous rocks indicate a predominantly mafic‐intermediate parentage. Mafic to intermediate pyroclastic rocks within the unit formed from both subaerial and ?submarine to emergent strombolian and phreatomagmatic eruptions. Quench‐fragmented hyaloclastite breccias are widespread and abundant. Shallow marine conditions for much of the succession are indicated by fossil assemblages and intercalated limestone and epiclastic sandstone and conglomerate facies. Volcanism and associated intrusions were widely dispersed in the Campwyn depositional basin in both space and time. The minor component of silicic volcanic products is thought to have been less proximal and derived from eruptive centres to the west, inboard of the basin.  相似文献   

20.
小岭旋回火山岩是辽东中生代火山岩的重要组成部分,主要岩性有安山岩、英安岩以及流纹质火山碎屑岩,属钾质钙碱性系列。其地球化学特征显示,火山岩总体具有高K、Na,低Al、Fe、Ca的特点。其中,火山熔岩具有富集Nb、Th、Hf、Zn,相对亏损Cs、Li、Sr的特点;火山碎屑岩普遍具贫Sr、V、Cu、Li,富含Hf的特点。火山岩总体为稀土富集型,安山岩及安山质火山碎屑岩,略显Eu正异常;流纹岩及流纹质火山碎屑岩具明显Eu负异常。火山岩成岩物质来源于地壳,成因以部分熔融为主,部分岩石显示具陆壳混染特点。火山岩形成动力来自于太平洋板块向古欧亚板块的俯冲,形成于早期拉张—晚期挤压的构造背景,具有板内活动带火山岩的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号