首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The restricted 2+2 body problem is considered. The infinitesimal masses are replaced by triaxial rigid bodies and the equations of motion are derived in Lagrange form. Subsequently, the equilibrium solutions for the rotational and translational motion of the bodies are detected. These solutions are conveniently classified in groups according to the several combinations which are possible between the translational equilibria and the constant orientations of the bodies.  相似文献   

2.
3.
This paper concerns the dynamics of a rigid body of finite extent moving under the influence of a central gravitational field. A principal motivation behind this paper is to reveal the hamiltonian structure of the n-body problem for masses of finite extent and to understand the approximation inherent to modeling the system as the motion of point masses. To this end, explicit account is taken of effects arising because of the finite extent of the moving body. In the spirit of Arnold and Smale, exact models of spin-orbit coupling are formulated, with particular attention given to the underlying Lie group framework. Hamiltonian structures associated with such models are carefully constructed and shown to benon-canonical. Special motions, namely relative equilibria, are investigated in detail and the notion of anon-great circle relative equilibrium is introduced. Non-great circle motions cannot arise in the point mass model. In our analysis, a variational characterization of relative equilibria is found to be very useful. Thereduced hamiltonian formulation introduced in this paper suggests a systematic approach to approximation of the underlying dynamics based on series expansion of the reduced hamiltonian. The latter part of the paper is concerned with rigorous derivations of nonlinear stability results for certain families of relative equilibria. Here Arnold's energy-Casimir method and Lagrange multiplier methods prove useful. This work was supported in part by the AFOSR University Research Initiative Program under grant AFOSR-87-0073, by AFOSR grant 89-0376, and by the National Science Foundation's Engineering Research Centers Program: NSFD CDR 8803012. The work of P.S. Krishnaprasad was also supported by the Army Research Office through the Mathematical Sciences Institute of Cornell University.  相似文献   

4.
Although analytic solutions for the attitude motion of a rigid body are available for several special cases, a comprehensive theory does not exist in the literature for the more complicated problems found in spacecraft dynamics. In the present paper, analytic solutions in complex form are derived for the attitude motion of a near-symmetric rigid body under the influence of constant body-fixed torques. The solution is very compact, which enables efficient and rapid machine computation. Numerical simulations reveal that the solution is very accurate when applied to typical spinning spacecraft problems.  相似文献   

5.
The equations of motion of a rigid body about a fixed point in a central Newtonian field is reduced to the equation of plane motion under the action of potential and gyroscopic forces, using the isothermal coordinates on the inertia ellipsoid.The construction of periodic solutions near the equilibrium points, by using the Lipaunov theorem of holomorphic integral, is obtained and the necessary and sufficient conditions for the stability of the system are given.  相似文献   

6.
Hamiltonian mechanics is applied to the problem of the rotation of the elastic Earth. We first show the process for the formulation of the Hamiltonian for rotation of a deformable body and the derivation of the equations of motion from it. Then, based on a simple model of deformation, the solution is given for the period of Euler motion, UT1 and the nutation of the elastic Earth. In particular it is shown that the elasticity of the Earth acts on the nutation so as to decrease the Oppolzer terms of the nutation of the rigid Earth by about 30 per cent. The solution is in good agreement with results which have been obtained by other, different approaches.  相似文献   

7.
Attitude dynamics of a rigid body on a Keplerian orbit: A simplification   总被引:1,自引:0,他引:1  
An infinitestimal contact transformation is proposed to simplify at first order the Hamiltonian representing the attitude of a triaxial rigid body on a Keplerian orbit around a mass point. The simplified problem reduces to the Euler-Poinsot model, but with moments of inertia depending on time through the longitude in orbit. Should the orbit be circular, the moments of inertia would be constant.  相似文献   

8.
Euler's equations, describing the rotation of an arbitrarily torqued mass asymmetric rigid body, are scaled using linear transformations that lead to a simplified set of first order ordinary differential equations without the explicit appearance of the principal moments of inertia. These scaled differential equations provide trivial access to an analytical solution and two constants of integration for the case of torque-free motion. Two additional representations for the third constant of integration are chosen to complete two new kinetic element sets that describe an osculating solution using the variation of parameters. The elements' physical representations are amplitudes and either angular displacement or initial time constant in the torque-free solution. These new kinetic elements lead to a considerably simplified variation of parameters solution to Euler's equations. The resulting variational equations are quite compact. To investigate error propagation behaviour of these new variational formulations in computer simulations, they are compared to the unmodified equations without kinematic coupling but under the influence of simulated gravity-gradient torques.  相似文献   

9.
Periodic rotations of a rigid body close to the flat motions were found. Their orbital stability was investigated. Analysis was done up to second order of the small parameter. It was proved that solutions found are orbitally stable except of the third order resonance case. This resonance do not appear if terms up to the first order of small parameter are considered only.  相似文献   

10.
In this paper we consider the restricted problem of three rigid bodies (an axisymmetric satellite in the gravitation field of two triaxial primaries). The collinear and triangular equilibrium solutions are obtained. The effect of the primaries on the location of the libration points of a spherical satellite has been studied numerically.  相似文献   

11.
The purpose of this paper is to study the motion of a spinless axisymmetric rigid body in a Newtonian field when we suppose the motion of the center of mass of the rigid body is on a Keplerian orbit. In this case the system can be reduced to a Hamiltonian system with configuration space of a two-dimensional sphere. We prove that the restricted planar motion is analytical nonintegrable and we find horseshoes due to the eccentricity of the orbit. In the caseI 3/I 1>4/3, we prove that the system on the sphere is also analytical nonintegrable.On leave from the Polytechnic Institute of Bucharest, Romania.  相似文献   

12.
Quaternions and the rotation of a rigid body   总被引:1,自引:0,他引:1  
The orientation of an arbitrary rigid body is specified in terms of a quaternion based upon a set of four Euler parameters. A corresponding set of four generalized angular momentum variables is derived (another quaternion) and then used to replace the usual three-component angular velocity vector to specify the rate by which the orientation of the body with respect to an inertial frame changes. The use of these two quaternions, coordinates and conjugate moments, naturally leads to a formulation of rigid-body rotational dynamics in terms of a system of eight coupled first-order differential equations involving the four Euler parameters and the four conjugate momenta. The equations are formally simple, easy to handle and free of singularities. Furthermore, integration is fast, since only arithmetic operations are involved.  相似文献   

13.
In the present paper, the motion of three rigid bodies is considered. With a set of new variables, and the 10 first integrals of the motion, the problem is reduced to a system of order 25 and one quadrature. The plane motions are characterized, and finally, an equation for the existence of central configurations (in particular, Lagrangian and Eulerian solutions) has been found. Besides, the case of three axisymmetric ellipsoids is studied.  相似文献   

14.
The present paper is a direct continuation of the paper (Duboshin, 1973) in which was proved the existence of one kind of Lagrange (triangle) and Euler (rectilinear) solutions of the general problem of the motion of three finite rigid bodies assuming different laws of interaction between the elementary particles of the rigid bodies. In particular, Duboshin found that the general problem of three rigid bodies permits such solutions in which the centres of mass of the bodies always form an equilateral triangle or always remain on one straight line, and each body possesses an axial symmetry and a symmetry with respect to the plane of the centres of mass and rotates uniformly around its axis orthogonal to this plane. The conditions for the existence of such solutions have also been found. The results in Duboshin's paper have greatly interested the author of the present paper. In another paper (Kondurar and Shinkarik, 1972) considering a more special problem, when two of the three bodies are spheres, either homogeneous or possessing a spherically symmetric distribution of the densities or of the material points, and the third is an axially symmetrical body possessing equatorial symmetry, the present author obtained analogous solutions of the ‘float’ type describing the motion of the indicated dynamico-symmetrical body in assuming its passive gravitation. In the present paper new Lagrange solutions of the considered general problems of three rigid bodies of ‘level’ type are found when the axes of geometrical and mechanical symmetry of all three bodies always lie in the triangle plane, and the bodies themselves rotate inertially around the symmetry axis, independently of the parameters of the orbital motion of the centres of mass as in the ‘float’ case. The study of particular solutions of the general problem of the translatory-rotary motion of three rigid bodies, which are a generalization of Lagrange solutions, is in the author's opinion, a novelty of some interest for both theoretical and practical divisions of celestial mechanics. For example, in recent times the problem of the libration points of the Earth-Moon system has acquired new interest and value. A possible application which should be mentioned is that to the orbits of artificial satellites near the triangular libration points to serve as observation stations with the aim of specifying the physical parameters in the Earth-Moon system (e.g., the relation of the Earth's mass to the Moon's mass for investigating the orientation of the satellite, solar radiation, etc.).  相似文献   

15.
The motion of two mutually attracting triaxial rigid bodies has been considered. Thirty six particular solutions corresponding to the libration points and analogous to the points Spoke, Arrow and Float (Duboshin, 1959) have been found. The stability of these libration points has been discussed in two categories of cases. In the first category, different shapes of the bodies have been taken and in the second category, the mass and the linear dimensions of one of the bodies have been taken small in comparison to the other.  相似文献   

16.
Equations of motion, referred to as full body models, are developed to describe the dynamics of rigid bodies acting under their mutual gravitational potential. Continuous equations of motion and discrete equations of motion are derived using Hamilton’s principle. These equations are expressed in an inertial frame and in relative coordinates. The discrete equations of motion, referred to as a Lie group variational integrator, provide a geometrically exact and numerically efficient computational method for simulating full body dynamics in orbital mechanics; they are symplectic and momentum preserving, and they exhibit good energy behavior for exponentially long time periods. They are also efficient in only requiring a single evaluation of the gravity forces and moments per time step. The Lie group variational integrator also preserves the group structure without the use of local charts, reprojection, or constraints. Computational results are given for the dynamics of two rigid dumbbell bodies acting under their mutual gravity; these computational results demonstrate the superiority of the Lie group variational integrator compared with integrators that are not symplectic or do not preserve the Lie group structure.  相似文献   

17.
18.
F. Roig  R. Duffard  D. Lazzaro 《Icarus》2003,165(2):355-370
A simple mechanical model is formulated to study the dynamics of rubble-pile asteroids, formed by the gravitational re-accumulation of fragments after the collisional breakup of a parent body. In this model, a rubble-pile consists of N interacting fragments represented by rigid ellipsoids, and the equations of motion explicitly incorporate the minimal degrees of freedom necessary to describe the attitude and rotational state of each fragment. In spite of its simplicity, our numerical examples indicate that the overall behavior of our model is in line with several known properties of collisional events, like the energy and angular momentum partition during high velocity impacts. Therefore, it may be considered as a well defined minimal model.  相似文献   

19.
In this paper, the restricted problem of three rigid bodies under central forces is considered, and the collinear and triangular equilibrium solutions are obtained. Finally, an application to the case of axisymmetric ellipsoids is made.  相似文献   

20.
The first-order perturbations of a system of two triaxial rigid spheroids under Hori-Lie transformation are investigated. The time dependence of the configuration of the three angular momentum vectors, two rotational and one orbital, is studied. The problem is simplified by the introduction of a new time parameter , such thatt is the hyperelliptic function of . The projectionsH 1 andH 2 of the rotational momentum vectors into the direction of the total angular momentum vector of the system are then harmonic or exponential functions of . The trajectory in theH 1,H 2 plane is a part of an ellipse or hyperbola respectively. If this conical section intersects a certain critical contourC, the system is bounced back along the original trajectory. The motion of the relative configuration of the angular momentum vectors is periodical except in a special aperiodic case. The expressions for the periods are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号