首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
在分析了两种网络存储技术优缺点的基础上,针对绕月探测工程地面应用系统数据管理的要求,提出了数据存储系统架构的基本技术方案,并讨论了如何实现系统的高可靠性、高可用性和虚拟化的存储管理。  相似文献   

2.
介绍了绕月探测工程数据接收地面站使用的通用解调处理机的基本组成和工作原理;讨论了针对误码率、极化合成、帧同步和滑步容错等指标要求的测试原理和方法,并对其测试结果进行了分析。为卫星通信的基带设备的测试提供了参考。  相似文献   

3.
《天文爱好者》2014,(1):26-31
我国月球探测工程又叫“嫦娥工程”,分绕月探测、落月探测、采样返回探测,即“绕、落、回”三个发展阶段完成,其中发射和运行的嫦娥一3是完成第二阶段落月探测任务的关键。  相似文献   

4.
看这标题,读者可能都会说笔者在痴人说梦话,在现今的太空探索年代,特别在月球方面,大大小小的地貌都已被绕月探测器无一遗漏地拍摄了,怎么可能在地面上用望远镜发现月球上“新”的地貌呢?  相似文献   

5.
庞征 《天文爱好者》2010,(11):36-40
2010年10月1日18:59:57,中国嫦娥2号月球探测卫星(以下简称嫦娥-2)在西昌卫星发射中心发射由长征-3C运载火箭直接送入近地点200千米、远地点380000千米的地月转移轨道。在奔月飞行期间。嫦娥-2只进行了1次轨道修正,并开展了X频段测控、紫外敏感器自主导航试验,还打开了3台科学探测仪器进行工作。  相似文献   

6.
“嫦娥一号”卫星绕月探测工程是我国首次月球探测工程,是我国跨入深空探测的第一步,在我国航天事业的发展史上具有里程碑意义。2004年1月我国正式启动月球探测工程,工程主要分“绕”、“落”、“回”三期,现处第一阶段。绕月探测工程由嫦娥一号卫星、长征三号甲运载火箭、西昌卫星发射场、测控系统和地面应用系统等五大系统组成。VLBI(甚长基线干涉测量)分系统是绕月探测工程测控系统的一个分系统,是测控系统的重要组成部分,与测控系统的USB系统共同完成嫦娥一号卫星在除发射段外的各个轨道段的测轨任务。  相似文献   

7.
探月光学有效载荷系统含CCD立体相机与干涉成像光谱仪两台光学遥感器,CCD立体相机完成的科学目标主要是与激光高度计配合获取月球表面三维立体图像。文章主要叙述了三线阵立体相机的工作原理,定标内容、目的以及CCD裸片像元检测和整机的相对定标和绝对定标过程。  相似文献   

8.
从解析形式出发,利用月球重力场模型JGL165P1,分析了月球重力场(带谐项)对绕月低轨卫星的长期影响。为了减少计算误差,保证计算精度,在分析解中使用循环公式来计算倾角函数。结果指出对于一个高度为100km的极月轨道卫星,冻结轨道存在的可能性不大,但是当轨道倾角在i=90°附近或者高度再高一些,则有可能存在冻结轨道;对于100km高的初始圆轨道,卫星在无控的情况下半年内将会坠落到月球表面,如果高度增加到200km,则不进行轨道控制也不会坠落到月面上。利用仿真软件GEODYN解算出来的结果证实了上述结论。  相似文献   

9.
平方千米阵列(Square Kilometre Array, SKA)望远镜建成后将具有超高的灵敏度、超快的巡天速度以及宽视场,进而产生超海量的观测数据。SKA天文台与各国区域数据中心间的海量数据同步传输是当前SKA建设中的一个难点。SKA先导项目使用的下一代归档存储系统(Next Generation Archive System, NGAS)在应用测试中存在效率低下,性能不足等问题。提出了一种基于ZeroMQ的数据存储与同步方法,通过采用更加高效的异步消息机制实现同步传输数据,回避了NGAS原有的采用HTTP协议的局限。实验结果表明,新方法在平均数据归档存储效率方面比原有方法快了近40倍,能够基本满足10 GB带宽的全速传输需要,取得了较好的使用效果。  相似文献   

10.
当月亮运行到地球和太阳之间,同时三者又恰好在一条视线上,从地球上看去,月亮遮住了太阳,于是发生了日食。同样的道理,当月亮遮住的天体是比较远的行星时,这种天象就叫月掩行星。几百年前,天文学家用望远镜观测月掩星时就已发现被掩的恒星是瞬息即逝地立即消失,而后又干净利落地复现。如果月亮是个有大气层的天体,当月掩星之前,将要被掩的恒星的亮度会逐渐减弱并消失在月亮的东边缘;过一会,被掩的恒星会从月亮的西边缘出现并一点点变亮。正因为没有观测到这种现象,所以从那时起人们已知道,  相似文献   

11.
近年来月球探测已经进入了一个全新的时代。特别是 1 990年以来 ,多个月球探测计划已经被成功实现 ,而且另外还有多个探测计划也在准备当中 ,并将在未来的几年内发射升空。在这种背景之下 ,中国的航天机构和有关的科学家也开始积极酝酿和开发自己的月球探测计划。这些月球探测计划将利用卫星上搭载的各种仪器探测和测量月球的地质和地理特性、化学成分和矿物组成、月球物理学特征以及包含地球大气在内的地月空间环境和行星际空间环境 ;进一步研究月球的起源和演化 ,探明月面环境 ,研究太阳等离子体物理 ,提供月面天文台和月面长期科研基地的候选地址 ,调查月球上的可利用资源 ,为将来开发月球提供充实的背景资料。参与新一轮的月球探测同样也为中国天文学研究带来了新的机会。  相似文献   

12.
甚长基线干涉测量(VLBI)是重要的射电天文技术,具有极高的空间分辨率,是国际上广泛采用的深空探测器高精度角位置测量手段[1]".相关处理机是VLBI数据预处理的核心设备.由于VLBI观测数据的相关处理具有数据密集和计算密集的双重特点,普通计算机的性能难以达到对数据处理速度的要求,需要有专用的高速硬件数据处理单元来完成相关处理.我国探月工程VLBI地面测控系统中所使用的硬件相关处理机是基于大容量、高性能的在线可编程门阵列(FPGA),自主研制的高速数据处理单元,可以实时处理每台站最高速率达1 Gb/s的数据,其数据处理结果,经过软件验证并与欧空局(ESA)提供的数据进行了比较,结果符合良好.  相似文献   

13.
14.
China's Lunar Exploration Program: Present and future   总被引:2,自引:0,他引:2  
China launched its first lunar probe, Chang’E-1, at 6:05 p.m. (10:05 GMT), October 24, 2007. Chang’E-1 blasted off on a Long March 3A carrier rocket from the No. 3 launch tower in the Xichang Satellite Launch Center of southwestern Sichuan Province. China National Space Administration performed the lunar orbit injection maneuver for Chang’E-1 at 11:25 a.m. on November 5, 2007 (China Standard Time). Chang’E-1 was injected into the lunar orbit after the maneuver, and will begin to explore the moon in the following 1 year. It is the first step into its ambitious three-phase moon mission, marking a new milestone in the Chinese space exploration history.  相似文献   

15.
首先简要介绍同波束干涉测量技术,随后叙述中国科学院国家天文台乌鲁木齐天文站在2008年成功完成了约200 h日本月球卫星SELENE同波束较差甚长基线干涉测量,并阐述乌站在此次VLBI中的作用。给出利用SELENE的观测数据,分析、解算出乌站25 m天线与日本VERA网相关台站基线Rstar、Vstar的S1、S2、S3、X频段的较差相关相位、较差相关相位残差,以及对各频段的较差相关相位、较差相关相位残差比对,最后获得较差相位时延。结果显示,同波束甚长基线干涉测量比传统VLBI观测得到的群时延精度提高了1~2个量级。  相似文献   

16.
分析了探月卫星激光测距的必要性和可行性,提出了安装在其上面的角反射器阵列的设计方案,并介绍了角反射器的有效反射面积、发散角、分布设计、安装和环境适应性.  相似文献   

17.
18.
1 IntroductionAsaresultofmanyyears’efforts,Chineseastronomicalcommunityhaslaiddownasolidas tronomicalobservationalfoundation ,whichisfiguredbythe 2 .1 6mand 1 .5 6mopticaltelescopes,the 1 .2minfraredtelescope ,thesolarmagneticfieldandmulti channeltelescope ,the 1 3.7m…  相似文献   

19.
先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)卫星是我国首颗太阳观测卫星, 主要观测太阳耀斑和日冕物质抛射以及产生它们的磁场结构. ASO-S卫星的科学应用系统是科学卫星工程的6大系统之一, 它连接科学用户和卫星数据, 为将卫星的科学数据转化为科学成果提供保障. 科学应用系统的数据库是连接软件与海量数据的枢纽, 为科学数据生产和用户服务及运行提供数据层的支撑. 介绍了科学应用系统的数据库架构设计、数据库的选择以及数据库性能优化和表样例. 这里的数据库包括观测计划、工程参数、运维日志、科学数据、定标数据和特征事件识别等数据库. 这些数据库的建设将为ASO-S卫星工程科学应用系统的顺利运行提供数据支撑, 也可以为未来其他科学卫星类似数据库的搭建提供参考和借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号