首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space – unless the baryonic loading is much larger than previously anticipated.  相似文献   

2.
Recent direct measurements of the energy spectra of the major mass components of cosmic rays have indicated the presence of a ‘kink’ in the region of 200 GeV per nucleon. The kink, which varies in magnitude from one element to another, is much sharper than predicted by our cosmic ray origin model in which supernova remnants are responsible for cosmic ray acceleration and it appears as though a new, steeper component is responsible.The component amounts to about 20 percent of the total at 30 GeV/nucleon for protons and helium nuclei and its magnitude varies with nuclear charge; the unweighted fraction for all cosmic rays being 36%.The origin of the new component is subject to doubt but the contenders include O, B, A, supergiant and Wolf-Rayet stars, by way of their intense stellar winds. Another explanation is also in terms of these particles as the sources but then being trapped, and even further accelerated, in the Local Bubble.  相似文献   

3.
Three particles with energies of 36, 35, and 58 EeV arrived from one sky region were recorded by two EAS arrays during a day. The events are assumed to have been produced by the beam of particles that resulted from the interaction of cosmic rays with a relativistic shock front.  相似文献   

4.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

5.
The results of analysis of approximately 3 years of gamma-ray observations (August 2008-July 2011) of the radio galaxy Centaurus A with the Fermi Large Area Telescope (Fermi LAT) are presented. By modeling the surrounding (background) sources including the giant lobes of Centaurus A, and using the standard binned likelihood analysis method, the energy spectrum of the core is derived. In the energy range below several GeV it is described by a single power-law with photon index Γ = 2.73 ± 0.06 in agreement with the report of the Fermi LAT collaboration based on the first 10 months observations of the source. However, at higher energies the new data show significant excess above the extrapolation of the energy spectrum from low energies. The total flux between 200 MeV to 50 GeV is estimated to be (1.63 ± 0.14) × 10−7 ph cm−2 s−1. The comparison of the corresponding Spectral Energy Distribution (SED) at GeV energies with the SED in the TeV energy band reported by the H.E.S.S. collaboration shows that we deal with two or perhaps even three components of gamma-radiation originating from different regions located within the central 10 kpc of Centaurus A.  相似文献   

6.
《Astroparticle Physics》2002,16(3):271-276
It has been suggested that cosmological γ-ray bursts (GRBs) can produce the observed flux of cosmic rays at the highest energies. However, recent studies of GRBs indicate that their redshift distribution likely follows the average star formation rate of the universe and that GRBs were more numerous at high redshifts. As a consequence, we show that photomeson production energy losses suffered by ultrahigh energy cosmic rays coming from GRBs would produce too sharp a spectral energy cutoff to be consistent with the air shower data. Futhermore, we show that cosmolgical GRBs fail to supply the energy input required to account for the cosmic ray flux above 1019 eV by a factor of 100–1000.  相似文献   

7.
The previously developed basic theory of the heliospheric modulation of high-energy cosmic rays is generalized to lower energies. Comparison of the theory with the results of long-term observations of cosmic rays in the stratosphere carried out by the group from the Lebedev Institute of Physics inMoscow andMurmansk shows satisfactory agreement. The cosmic rays are shown to behave quite differently when even and odd solar cycles alternate. Possible causes of the anomalously high cosmic-ray intensity recorded during the last solar activity minimum are discussed.  相似文献   

8.
Version 2.0 of CRPropa [CRPropa is published under the 3rd version of the GNU General Public License (GPLv3). It is available, together with a detailed documentation of the code, at https://crpropa.desy.de.] is public software to model the extra-galactic propagation of ultra-high energy nuclei of atomic number Z26 through structured magnetic fields and ambient photon backgrounds taking into account all relevant particle interactions. CRPropa covers the energy range 7×1016<E/eV<A×1022 where A is the nuclear mass number. CRPropa can also be used to track secondary γ-rays and neutrinos which allows the study of their link with the charged primary nuclei – the so called multi-messenger connection. After a general introduction we present several sample applications of current interest concerning the physics of extragalactic ultra-high energy radiation.  相似文献   

9.
We study the temporal evolution of cosmic ray intensity during ~27-day Carrington rotation periods applying the method of superposed epoch analysis. We discuss about the average oscillations in the galactic cosmic ray intensity, as observed by ground based neutron monitors, during the course of Carrington rotation in low solar activity conditions and in different polarity states of the heliosphere (A<0 and A>0). During minimum and decreasing phases in low solar activity conditions, we compare the oscillation in one polarity state with that observed in other polarity state in similar phases of solar activity. We find difference in the evolution and amplitude of ~27-day variation during A<0 and A>0 epoch. We also compare the average variations in cosmic ray intensity with the simultaneous variations of solar wind parameters such as solar wind speed and interplanetary magnetic field strength. From the correlation analysis between the cosmic ray intensity and the solar wind speed during the course of Carrington rotation, we find that the correlation is stronger for A>0 than A<0.  相似文献   

10.
The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: a generic calculation indicates that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e. they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies and derive cosmic ray spectra under the assumption of hadronic emission. The cosmic ray spectra show a large variety in their energy budget, spectral behavior and maximum energy. These sources are assumed to be representative for the total class of SNRs, where we assume that about 100–200 cosmic ray emitting SNRs should be present today. Finally, we use these source spectra to simulate the cosmic ray transport from individual SNRs in the Galaxy with the GALPROP code for cosmic ray propagation. We find that the cosmic ray budget can be matched well for these sources. We conclude that gamma-ray emitting SNRs can be a representative sample of cosmic ray emitting sources. In the future, experiments like CTA and HAWC will help to distinguish hadronic from leptonic sources and to further constrain the maximum energy of the sources and contribute to producing a fully representative sample in order to further investigate the possibility of SNRs being the dominant sources of cosmic rays up to the knee.  相似文献   

11.
We make a detailed analysis of cross-correlation and time-lag between monthly data of galactic cosmic rays (GCRs) intensity and different solar activity indices (e.g., sunspot number, sunspot area, green coronal Fe line and 10.7 cm solar radio flux) during 19–23 solar cycles. GCRs time-series data from Kiel neutron monitor station and solar data from the last 50 years period, covering five solar cycles (19–23), and alternating solar polarity states (i.e., five A < 0 and four A > 0) have been investigated. We find a clear asymmetry in the cross-correlation between GCRs and solar activity indicators for both odd and even-numbered solar cycles. The time-lags between GCRs and solar parameters are found different in different solar cycles as well as in the opposite polarity states (A < 0 and A > 0) within the same solar cycle. Possible explanations of the observed results are discussed in light of modulation models, including drift effects.  相似文献   

12.
The results of the observations to search gamma-ray sources with the energy greater than 2×1012 eV, which were made in Crimean Astrophysical Observatory during the years 1969–73 are presented. A technique of the detection of the EAS Cerenkov flashes was used.The quality of the data obtained is analysed. The criteria for the selection of the data free from meteorological variations are considered.It was shown that two objects, namely, Cyg X-3 and Cas -1, may be the sources of high-energy gamma quanta. It is probable that the object with the coordinates =05h15m, =+1° is the source of gamma-rays as well. An unidentified object Cas -1 is variable: gamma-ray flux was observed twice — in Sepember–October 1971 and in December 1972. It is possible that the flux from Cyg X-3 has a period of 4.8 hr.
I I , I I , - >2.1012 . I . I , I I, I ., - -1 Cyg -3- -I . , =0515 ·=+1° -.I -1 I: I J I- - 1971 1972 . Cyg -3, , - T=4.8 .
  相似文献   

13.
We search for variable sources, using the data of the surveys conducted on the RATAN-600 radio telescope in 1980–1994 at 3.94 GHz. To test the radio sources of the RCR (RATAN Cold Refined) catalog for variability, we estimated the long-term variability indices V of the studied objects, their relative variability amplitudes V χ , and the χ 2 probabilities p. Out of about two hundred considered sources, 41 proved to have positive long-term variability indices, suggesting that these sources may be variable. Fifteen objects can be considered to be reliably variable according to the χ 2 criterion p > 0.98, three of these sources have χ 2 probabilities p ≥ 0.999. The corresponding probabilities for six sources lie in the 0.95 < p < 0.98 interval, and those of the remaining 20 objects in the 0.73 ≤ p < 0.95 interval. Twenty four of 41 objects are variable or possibly variable in the optical range, and five objects are known variable radio sources. We construct the light curves and spectra for the sources with positive long-term variability indices.  相似文献   

14.
Possible acceleration of cosmic rays passing through a kind of amplification channel (via anomalous diffusion modes of propagating plane-wave fronts) induced by a system of rotating gases (or disk-like gases) is presented. Our novel numerical results after detailed analysis were based on the quantum discrete kinetic model (considering Uehling–Uhlenbeck collision term) which has been used to study the propagation of plane (e.g., acoustic) waves propagating in composite-particle gases under uniform gravitational fields.  相似文献   

15.
The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis.From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.  相似文献   

16.
Results of a harmonic analysis of the arrival directions for primary cosmic-ray particles with energies E 0 ? 1017 eV and zenith angles θ ? 45° recorded on the Yakutsk array over 29 years of its continuous operation (1983–2012) are presented. These events are shown to have different global anisotropies in different time intervals: the phase of the first harmonic φ 1 = 119° ± 18° and its amplitude A 1 = 0.030 ± 0.014 in the 1983–1994 samples changed into φ 1 = 284° ± 13° and A 1 = 0.033 ± 0.010 in 1998–2010. All of this could be caused by a considerably increased flux of heavy nuclei from the exit of the Galaxy’s local arm after 1996.  相似文献   

17.
We report some of the results of the search for narrow-band spatial and spectral fluctuations of cosmic microwave background at the wavelength of 6.2 cmperformed with the RATAN-600 radio telescope in 2001–2006 in two 35′ × 7′ strips on the sky in the vicinity of the North Celestial Pole. We find the spectra of spatial fluctuations in the 12 MHz radio-frequency band and in the interval of spatial periods from 4′ to 16′ to exhibit power-law rises with exponents reaching ?2.0±0.5, with a periodicity of 2–3 MHz. We also find two narrow-band (in terms of angular frequency) features at 4870.4 and 4871.5 MHz with the corresponding fluctuation amplitudes of 5±0.5 mK in terms of antenna temperature in the vicinity of angular periods of about 5′ with the frequency bandwidths of about 600 kHz. Standard tests performed using the spectra of the half-sum and half-difference of two groups of observations randomly drawn from a total sample of 23 records of the March 2002 observing set confirm the reality of the features of the angular spectrumof fluctuations mentioned above and so does the comparison with the spectra of cold matched load connected to the receiver input instead of the antenna. However, the nature of the features found remains unclear. Our attempt to link this radiation to rotational transitions 2Π1/2, J = 5/2 of the CH molecule, which has one of the components of its multiplet located inside the frequency interval of interest considered failed.  相似文献   

18.
《New Astronomy》2003,8(7):629-644
In a gravitational virialized bound system built up of two components, one of which is embedded in the other, the Clausius’ virial energy of one subcomponent is not, in general, equal to its total potential energy, as occurs in a single system without external forces. This is the main reason for the presence, in the case of two non-coinciding concentric spheroidal subsystems, of a minimum (in absolute value) in the Clausius’ virial of the inner component B, when it assumes a special configuration characterized by a value of its semi-major axis we have named tidal radius. The physical meaning, connected with its appearance, is to introduce a scale length on the gravity field of the inner subsystem, which is induced from the outer one. Its relevance in the galaxy dynamics has been stressed by demonstrating that some of the main features of Fundamental Plane may follow as consequence of its existence. More physical insight into the dynamics of a two-component system may be got by looking at the location of this scale length inside the plots of the potential energies of each subsystem and of the whole system and by also taking into account the trend of the anti-symmetric residual-energy, that is the difference between the tidal and the interaction-energy of each component. Some thermodynamical arguments related to the inner component are also added to prove how special is the tidal radius configuration. Moreover, the role of the divergency at the center of the two subsystems in obtaining this scale length is considered. For the sake of simplicity the analysis has been performed in the case of a frozen external component even if this constraint does not appear to be too relevant in order to preserve the main results.  相似文献   

19.
In the paper we present the results of search for transient sources using the data from the surveys conducted onRATAN-600 at 7.6 cmin the time period of 1980–1994.We detected three events at a level of 3–5σ. A search for coincidenceswith detected transient events was carried out. Using the data from radio and optical surveys and the VizieR, SIMBAD, and NED databases, we made assumptions on the possible nature of these events. The first transient is probably associated with AGN activity, the second—with a cataclysmic GRB event or with a supernova, the origin of the third is not determined. The inference on the possibility of search for variable sources and transients using the data from the RATAN-600 blind surveys was drawn. Searching for transients, we have found twenty-two radio sources which are associated with the NVSS objects but are not included in the RCR catalog. Three of them turned out to be presumably variable.  相似文献   

20.
According to a proposal of Lloyd-Evans (1985), the average charge of particles in the cosmic radiation near 1014eV can be determined by observing the effect of the solar magnetic field on the Sun's shadow in the angular distribution of energetic primary cosmic ray particles. This suggestion is shown to be realizable with a new type of EAS-array proposed for the purpose of high energy -ray astronomy. The same measurement provides information on the integrated strength of the solar magnetic field. As the array will be sensitive and provide good angular resolution down to a few times 1012eV, more detailed results on the primary composition near 1013eV can be obtained by investigating the shape of the shadow of the Moon as affected by the geomagnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号