首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our recent paper (Jakimiec and Tomczak, Solar Physics 261, 233, 2010) we investigated quasi-periodic oscillations of hard X-rays during the impulsive phase of solar flares. We have come to the conclusion that they are caused by magnetosonic oscillations of magnetic traps within the volume of hard-X-ray (HXR) loop-top sources. In the present paper we investigate four flares that show clear quasi-periodic sequences of the HXR pulses. We also describe our phenomenological model of oscillating magnetic traps to show that it can explain the observed properties of the HXR oscillations. The main results are the following: i) Low-amplitude quasi-periodic oscillations occur before the impulsive phase of some flares. ii) The quasi-periodicity of the oscillations can change in some flares. We interpret this as being due to changes of the length of oscillating magnetic traps. iii) During the impulsive phase a significant part of the energy of accelerated (non-thermal) electrons is deposited within a HXR loop-top source. iv) The quick development of the impulsive phase is due to feedback between the pressure pulses by accelerated electrons and the amplitude of the magnetic-trap oscillation. v) The electron number density and magnetic field strength values obtained for the HXR loop-top sources in several flares fall within the limits of N≈(2 – 15)×1010 cm−3, B≈(45 – 130) gauss. These results show that the HXR quasi-periodic oscillations contain important information about the energy release in solar flares.  相似文献   

2.
The results of optical R-band photometry of three X-ray selected BL Lacertae objects 1ES 0502+675, 1ES 0806+524 and 1ES 1959+650 from the Einstein Slew Survey are presented. The observations are performed during 1997–2006 with the 70-cm meniscus type telescope of Abastumani Astrophysical Observatory. The objects show clear long-term variability with time scales of 1–3 years without evident periodicity. The main results consist in the discovery of multiple-peak structures on historical light curves as predicted theoretically on the basis of the assumption that long-term variability of blazars are triggered by ultrarelativistic shock waves propagating through their jets. They are direct evidence of the existence of reverse shocks besides the main one arising by a single disturbance. Two-peak maxima are found for 1ES 0502+675 and 1ES 0806+524. The more complicated structure shows 1ES 199+650 - a maximum with four consequent peaks. The relative strengths of the main and reverse shocks are mainly equal according to the shape of the respective peaks. The brightness dip between them is on average 60% less than in the case of consequent main shocks. Optical maximum epochs, covered well by the observations, show that the main shocks are either not always accompanied by reverse ones or the later are not always strong enough to be discovered by the observations.  相似文献   

3.
The astrophysical jet experiment at Caltech generates a T=2–5 eV, n=1021–1022 m−3 plasma jet using coplanar disk electrodes linked by a poloidal magnetic field. A 100 kA current generates a toroidal magnetic field; the toroidal field pressure inflates the poloidal flux surface, magnetically driving the jet. The jet travels at up to 50 km/s for ∼20–25 cm before colliding with a cloud of initially neutral gas. We study the interaction of the jet and the cloud in analogy to an astrophysical jet impacting a molecular cloud. Diagnostics include magnetic probe arrays, a 12-channel spectroscopic system and a fast camera with optical filters. When a hydrogen plasma jet collides with an argon target cloud, magnetic measurements show the magnetic flux compressing as the plasma jet deforms. As the plasma jet front slows and the plasma piles up, the density of the frozen-in magnetic flux increases.  相似文献   

4.
《Astroparticle Physics》2006,24(6):537-542
The AMANDA neutrino telescope has recently reported the detection of high-energy neutrinos spatially and temporally coincident with the flaring of the TeV blazar 1ES 1959 + 650. If high-energy neutrinos are in fact generated by this blazar, it would be the first strong evidence for the hadronic acceleration of cosmic rays. At present, the statistical significance of this observation cannot be reliably assessed, however. In this letter, we investigate whether circumstances exist where the source can produce the flux implied by the coincident events. We show that if the TeV gamma-ray emission observed from 1ES 1959 + 650 or other nearby TeV blazars is the result of accelerated protons interacting with nucleons, it is reasonable that AMANDA could detect several events during a flaring period. Such rates require that the spectral index of the source be rather high (for instance ∼2.8 for 1ES 1959 + 650) and that the Lorentz factor of the jet be fairly small (Γ  1).  相似文献   

5.
High resolution VLBI hybrid map of the BL Lacertae object AO 0235+164 has been produced at a wavelength of 6 cm. The map shows that the object's radio structure is dominated by a strong, nearly unresolved core with a weak and clear component in northeast direction and a faint one in southwest direction. The positional angle of its jet component are equal to66.4°, which is the biggest one in comparison with previous results. Based on the variation of its flux density with time at three different frequencies, we find that the flux density of AO 0235+164 shows bi-periodic variation, i.e., the shorter periodic variation of ∼ 1.81 years and a longer periodic variation of ∼ 3.63 years. The later is essentially in agreement with our earlier predicted results that the existence of the periodic variation of ∼ 3.63 years may be caused by the precession of its `central engine'. This bi-periodic variation is probably the results of the joint action of jet outbursts and jet rotation. With the binary black hole models of Kaastra and Roos, we get the minimum total mass of the binary system of 1.46 × 108 M . This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We present study of relationship of GSXR flares with Hα flares, hard X-ray (HXR) bursts, microwave (MW) bursts at 15.4 GHz, type II/IV radio bursts, coronal mass ejections (CMEs), protons flares (>10 MeV) and ground level enhancement (GLE) events we find that about 85.7%, 93%, 97%, 69%, 60%, 11.1%, 79%, 46%, and 23%% GSXR flares are related/associated with observed Hα flares, HXR bursts, MW bursts at 15.4 GHz, type II radio bursts, type IV radio bursts, GLE events, CMEs, halo CMEs, and proton flares (>10 MeV), respectively. In the paper we have studied the onset time delay of GSXR flares with Hα flares, HXR, and MW bursts which shows the during majority GSXR flares SXR emissions start before the Hα, HXR and MW emissions, respectively while during 15–20% of GSXR flares the SXR emissions start after the onset of Hα, HXT and MW emissions, respectively indicating two types of solar flares. The, onset time interval between SXR emissions and type II radio bursts, type IV radio bursts, GLE events CMEs, halo CMEs, and protons flares are 1–15 min, 1–20 min, 21–30 min, 21–40 min, 21–40 min, and 1–4 hrs, respectively. Following the majority results we are of the view that the present investigations support solar flares models which suggest flare triggering first in the corona and then move to chromospheres/ photosphere to starts emissions in other wavelengths. The result of the present work is largely consistent with “big flare syndrome” proposed by Kahler (1982).  相似文献   

7.
We present the results of a systematic search for outbursts in the narrow positron annihilation line on various time scales (5 × 104–106 s) based on the SPI/INTEGRAL data obtained from 2003 to 2008. We show that no outbursts were detected with a statistical significance higher than ∼6σ for any of the time scales considered over the entire period of observations. We also show that, given the large number of independent trials, all of the observed spikes could be associated with purely statistical flux fluctuations and, in part, with a small systematic prediction error of the telescope’s instrumental background. Based on the exposure achieved in ∼6 yr of INTEGRAL operation, we provide conservative upper limits on the rate of outbursts with a given duration and flux in different parts of the sky.  相似文献   

8.
We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the “Solar X-ray Spectrometer” (SOXS). The SOXS onboard the Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003. Firstly we model the spectral evolution of the X-ray line and continuum emission flux F(ε) from the flare by integrating a series of isothermal plasma flux. We find that the multi-temperature integrated flux F(ε) is a power-law function of ε with a spectral index (γ)≈−4.65. Next, based on spectral-temporal evolution of the flares we find that the emission in the energy range E=4 – 15 keV is dominated by temperatures of T=12 – 50 MK, while the multi-thermal power-law DEM index (δ) varies in the range of −4.4 and −5.7. The temporal evolution of the X-ray flux F(ε,t) assuming a multi-temperature plasma governed by thermal conduction cooling reveals that the temperature-dependent cooling time varies between 296 and 4640 s and the electron density (n e) varies in the range of n e=(1.77 – 29.3)×1010 cm−3. Employing temporal evolution technique in the current study as an alternative method for separating thermal from nonthermal components in the energy spectra, we measure the break-energy point, ranging between 14 and 21±1.0 keV.  相似文献   

9.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

10.
We investigate the possibility of constructing a unified model for the radio and X-ray outbursts of nova CI Cam 1998 in terms of the shock interaction of the nova envelope with circumstellar gas. In a spherical model, we manage to describe the kinematics and evolution of the radio source flux and very roughly the evolution of the X-ray flux. The X-ray spectrum in this model is appreciably harder. Better agreement with observations in all respects is shown by the model for the interaction of a spherical nova envelope with a nonspherical circumstellar medium. The latter is simulated in our model by a combination of rarefied bipolar conical outflows of stationary wind with an opening angle of 120° and a dense equatorial disk. In the optimal model, the initial kinetic energy of the nova envelope is ∼5 × 1043 erg and its mass lies within the range (1–5) × 10−7 M . The energy and mass of the nova envelope as well as the mass loss rate in the nonspherical model are close to those obtained in the spherical model by Filippova et al. (2008).  相似文献   

11.
This paper presents a modeling of the variable synchrotron emission in the BL Lacertae sources (BLLs). Flux variability is assumed to be a result of the interaction between a relativistic shock wave with a magnetized jet material. Long-term flares (of months to years durations) are modeled via the propagation of a plane relativistic shock wave though the emission zone of a cylindrical form with the radius R and length H. As for short-term bursts (lasting from days to weeks), they may result from shock passage through the jet inhomogeneities such as a shell of enhanced density downstream to a Mach disc, originated due to pressure imbalance between the jet and its ambient medium. Emitting particles (electrons) gain the energies, sufficient to produce synchrotron photons at optical—X-ray frequencies, via the first-order Fermi mechanism. Observation’s frequency is the main parameter determining a rate of the increase/ decay of the emission via the characteristic decay time of emitting electrons. The magnetic field, assumed to be turbulent with an average field constant throughout the entire emission zone, is another key parameter determining the slope of a lightcurve corresponding to the flare—the higher strength the magnetic field has, the steeper the lightcurve is. The rest input parameters (shock speed, jet viewing angle, maximum/minimum energies of the electrons, particles’ density etc.), as well the strength of average magnetic field, influence the energy output from a flare.  相似文献   

12.
Most of the extragalactic sources from which very-high-energy (VHE, E > 1011 eV) gamma-ray fluxes have been detected belong to the category of high-energy peaked BL Lacertae objects (HBLs)—the sources in which the synchrotron radiation peaks in the UV or X-ray band. They often have higher X-ray luminosities than the VHE gamma-ray energy output, which makes them the most valuable objects for studying the characteristic spectral and temporal variations in the region of the synchrotron peak of the spectral energy distribution. The blazar 1ES 1426+428 belonging to this category is a target of many multiwavelength studies, both orbital and ground-based ones. The properties of its X-ray emission have also been investigated using RXTE/PCA, XMM-Newton, and SWIFT observations. Archival PCA/RXTE data with a total exposure time in 2002 and 2004 of ≈120h and the most recent available background and calibration files have been used. The extracted light curves of 1ES 1426+428 in the 2.9–24 keV energy band have shown an intense flaring activity on various time scales. Analysis of the observational data has also confirmed the spectral hardening with increasing X-ray intensity typical of blazars. The flaring state of the object is also characterized by a flat spectrum, which steepens with decreasing flux. The previously detected evidence of a spectral hysteresis in a separate flare has also been confirmed. Observations of 1ES 1426+428 with the SWIFT/XRT telescope and the EPIC instrument onboard XMM-Newton have revealed several intermediate-intensity flares in the 1.5–12 keV energy band with flux variations reaching a factor of 2, while analysis of the light curves has revealed a correlation between two components of the X-ray emission from the object.  相似文献   

13.
We present a statistical study of the characteristics of type-II radio bursts observed in the metric (m) and deca-hectometer (DH) wavelength range during 1997–2008. The collected events are divided into two groups: Group I contains the events of m-type-II bursts with starting frequency ≥ 100 MHz, and group II contains the events with starting frequency of m-type-II radio bursts < 100 MHz. We have analyzed both samples considering three different aspects: i) statistical properties of type-II bursts, ii) statistical properties of flares and CMEs associated with type-II bursts, and iii) time delays between type-II bursts, flares, and CMEs. We find significant differences in the properties of m-type-II bursts in duration, bandwidth, drift rate, shock speed and delay between m- and DH-type-II bursts. From the timing analysis we found that the majority of m-type-II bursts in both groups occur during the flare impulsive phase. On the other hand, the DH-type-II bursts in both groups occur during the decaying phase of the associated flares. Almost all m-DH-type-II bursts are found to be associated with CMEs. Our results indicate that there are two kinds of shock in which group I (high frequency) m-type-II bursts seem to be ignited by flares whereas group II (low frequency) m-type-II bursts are CME-driven.  相似文献   

14.
A compact structure of a low-mass Type I presupernovae is assumed to be an essential feature of the hydrodynamical problem dealing with the supernova Type I (SNI) envelope outbursts. This structure is characterized by a degenerate carbon-oxygen core, which suffers a thermonuclear explosion of carbon fuel (M 0≃1.40M ), and by a compact lowmass envelope (M e ≲0.1M ) with external radiusR e≃109 cm. The parameters, of this hydrostatic envelope are specified and then, for a relatively small explosion energy, ofW 0≃(2–10)×1049 erg, hydrodynamic problem of the envelope ejection is solved numerically. This energy comes from neutrino-induced detonative carbon burning. The resulting structure of the SNI atmosphere expanding with the velocity gradient can be employed for an interpretation of the observed SNI spectra. In accordance with our previous papers, the SNI light curves are considered to occur due to an additional slow (with time-scale 106–107 s) release of the bulk of the SNI energy,W≃1051, erg. The slow energy release does not, however, affect the structure of the outermost expanding layers of the envelope which are responsible for the SNI spectra. A short (Δt≃10−2 s) burst of soft (2–10 keV) X-rays with total radiated energy of about 1040 erg is found to appear 10–20 days before the SNI optical maximum.  相似文献   

15.
TeV γ-ray detections in flaring states without activity in X-rays from blazars have attracted much attention due to the irregularity of these “orphan” flares. Although the synchrotron self-Compton model has been very successful in explaining the spectral energy distribution and spectral variability of these sources, it has not been able to describe these atypical flaring events. On the other hand, an electron–positron pair plasma at the base of the AGN jet was proposed as the mechanism of bulk acceleration of relativistic outflows. This plasma in quasi-thermal equilibrium called Wein fireball emits radiation at MeV-peak energies serving as target of accelerated protons. In this work we describe the “orphan” TeV flares presented in blazars 1ES 1959+650 and Mrk 421 assuming geometrical considerations in the jet and evoking the interactions of Fermi-accelerated protons and MeV-peak target photons coming from the Wein fireball. After describing successfully these “orphan” TeV flares, we correlate the TeV γ-ray, neutrino and UHECR fluxes through interactions and calculate the number of high-energy neutrinos and UHECRs expected in IceCube/AMANDA and TA experiment, respectively. In addition, thermal MeV neutrinos produced mainly through electron–positron annihilation at the Wein fireball will be able to propagate through it. By considering two- (solar, atmospheric and accelerator parameters) and three-neutrino mixing, we study the resonant oscillations and estimate the neutrino flavor ratios as well as the number of thermal neutrinos expected on Earth.  相似文献   

16.
In searchs for flare stars in the vicinity of the Pleiades cluster, three flares were detected in 1970,1972, and 1977 in a star with the coordinates α 1950 = 3 h 48 m ·9, δ l950 = 25‡15’.8. The star’s brightness at a minimum is >21 m ·5. The star was tentatively assigned to the U Gem type. To confirm this assumption, we examined photographic plates for the period of 1947–1987. As a result, we found 12 more flares. The average recurrence time based on the 1963–1977 observations is about 330 days, and the maximum flare amplitude is >6 m .Narrow superflares and steady-state flares lasting over 40 days have been observed in the star. The results show that this is a dwarf nova of the UGSU subtype. Translated from Astrofizika, Vol. 42, No. 1, pp. 47–52, January–March, 1999.  相似文献   

17.
We report on the detailed analysis of i) differences between the properties of type IIs with various starting frequencies (high: ≥100 MHz; low: ≤50 MHz; mid: 50 MHz ≤f≤ 100 MHz) and ii) the properties of CMEs and flares associated with them. For this study, we considered a sample of type II radio bursts observed by Culgoora radio spectrograph from January 1998 to December 2000. The X-ray flares and CMEs associated with these events are identified using GOES and SOHO/LASCO data. The secondary aim is to study the frequency dependence on other properties of type IIs, flares, and CMEs. We found that the type IIs with high starting frequencies have larger drift rate, relative drift rate, and shock speed than the type IIs with low starting frequencies. The flares associated with high frequency type IIs are of impulsive in nature with shorter rise time, duration and delay between the flare start and type II start times than the low frequency type IIs. There is a distinct power – law relationship between the flare parameters and the starting frequencies of type II bursts, whereas the trend in the CME parameters shows low correlation. While the mean speed of CMEs is larger for the mid-frequency group, it is nearly the same for the high and low frequency groups. On the other hand, the percentage of CME association (90%) is larger for low frequency type IIs than for the high frequency type IIs (75%).  相似文献   

18.
We studied the characteristics of Coronal Mass Ejections (CMEs) associated with solar flares and Deca-Hectometric (DH) type II radio bursts, based on source position during 23rd solar cycle (1997–2007). We classified these CME events into three groups using solar flare locations as, (i) disk events (0–30); (ii) intermediate events (31–60) and (iii) limb events (61–90). Main results from this studies are, (i) the number of CMEs associated with solar flares and DH-type IIs decreases as the source position approaches from disk to limb, (ii) most of the DH CMEs are halo (72%) in disk events and the number of occurrence of halo CMEs decreases from disk to limb, (iii) the average width and speed of limb events (164 and 1447 km s−1) are higher than those of disk events (134 and 1035 km s−1) and intermediate events (146 and 1170 km s−1) and (iv) the average accelerations for disk, intermediate and limb events are −8.2 m s−2, −10.3 m s−2 and −4.5 m s−2 respectively. These analysis of CMEs properties show more dependency on longitude and it gives strong evidence for projection effect.  相似文献   

19.
We investigate the properties of acoustic events (AEs), defined as spatially concentrated and short duration energy flux, in the quiet Sun, using observations of a 2D field of view (FOV) with high spatial and temporal resolution provided by the Solar Optical Telescope (SOT) onboard Hinode. Line profiles of Fe i 557.6 nm were recorded by the Narrow-band Filter Imager (NFI) on a 82″×82″ FOV during 75 min with a time step of 28.75 s and 0.08″ pixel size. Vertical velocities were computed at three atmospheric levels (80, 130, and 180 km) using the bisector technique, allowing the determination of energy flux to be made in the range 3 – 10 mHz using two complementary methods (Hilbert transform and Fourier power spectrum). Horizontal velocities were computed using local correlation tracking (LCT) of continuum intensities providing divergences. We found that the net energy flux is upward. In the range 3 – 10 mHz, a full FOV space and time averaged flux of 2700 W m−2 (lower layer 80 – 130 km) and 2000 W m−2 (upper layer 130 – 180 km) is concentrated in less than 1 % of the solar surface in the form of narrow (0.3″) AE. Their total duration (including rise and decay) is of the order of 103 s. Inside each AE, the mean flux is 1.6×105 W m−2 (lower layer) and 1.2×105 W m−2 (upper). Each event carries an average energy (flux integrated over space and time) of 2.5×1019 J (lower layer) to 1.9×1019 J (upper). More than 106 events could exist permanently on the Sun, with a birth and decay rate of 3500 s−1. Most events occur in intergranular lanes, downward velocity regions, and areas of converging motions.  相似文献   

20.
I present the search for V, R, I rapid optical variability of three gamma-ray loud blazars, 3C 454.3, 1ES 1959+650, 1ES 2344+514, performed at the Loiano telescope. The source 3C 454.3 was observed during the decline of the May 2005 outburst. 3C 454.3 and 1ES 2344$+$514 showed rapid variability in one band at least. The data in this work and archival data support the correlation between the occurrence of rapid variability and the flux variation suggested by Howard et~al., AJ 127, 17 (2004). PACS 98.54.Cm, 95.75.De  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号