首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 8 毫秒
1.
In tectonically active regions, bedrock channels play a critical role in dictating the pace of landscape evolution. Models of fluvial incision into bedrock provide a means of investigating relationships between gradients of bedrock channels and patterns of active deformation. Variations in lithology, orographic precipitation, sediment supply, and erosional processes serve to complicate tectonic inferences derived from morphologic data, yet most tectonically active landscapes are characterized by these complexities. In contrast, the central Oregon Coast Range (OCR), which is situated above the Cascadia subduction zone, has experienced rock uplift for several million years, did not experience Pleistocene glaciation, boasts a relatively uniform lithology, and exhibits minor variations in precipitation. Although numerous process-based geomorphic studies suggest that rates of erosion across the OCR are relatively constant, it has not been demonstrated that bedrock channel gradients in the region exhibit spatially consistent values. Analysis of broadly distributed, small drainage basins (5–20 km) in the central OCR enables us to explore regional variability in bedrock channel gradients resulting from differential rock uplift or other sources. Consistent with previous studies that have documented local structural control of deformed fluvial terraces in the western portion of our study area, our data reveal a roughly 20-km-wide band of systematically elevated channel slopes (roughly twice the background value), roughly coincident with the strike of N–S-trending mapped folds. Although many factors could feasibly generate this pattern, including variable rock strength, precipitation gradients, or temporal or spatial variations in forearc deformation, the elevated bedrock channel slopes likely reflect differential rock uplift related to activity of local structures. Importantly, our analysis suggests that rock uplift and erosion rates may vary systematically across the OCR. Although our calculations were focused on the fluvial-dominated portion of study basins, our results have implications for upstream areas, including unchanneled valleys that often serve as source areas for long-runout debris flows. Zero-order basins (or topographic hollows) within the N–S-trending band of elevated channel slopes tend to be steeper than adjacent areas and may experience more frequent evacuation by shallow landsliding. Thus, this region of the OCR may be highly sensitive to land use practices and high-intensity rainstorms.  相似文献   

2.
Dawn T. Nicholson   《Geomorphology》2008,101(4):655-665
Microweathering of ice-smoothed bedrock surfaces was investigated in the Røldal area of Hardanger Plateau (60°), southern Norway. Postglacial rates of weathering were determined from surface lowering using quartz veins as reference surfaces. Weathering processes are inferred from assessment of weathering rind formation, surface hardness, and the preservation of small-scale glacial erosional features.Surface lowering rates for a range of metamorphic rocks vary from 0.05 to 2.20 mm ka− 1 and are broadly comparable with those obtained from crystalline rocks in other periglacial environments. The mean rate of surface lowering at 0.55 mm ka− 1 is low and demonstrates the relatively small impact of microweathering on postglacial landscape evolution. Variations in bedrock microweathering can be explained by lithological variation. Amphibolite and mica-rich bedrock surfaces experience greater denudation and weakening, least weathering rind formation, and abundant preservation of glacial striae, despite greater surface lowering. Conversely, quartz-rich bedrock surfaces are most resistant to denudation and weakening, but have greater weathering rind formation and fewer preserved striae. Postglacial microweathering is achieved primarily through granular disintegration involving detachment and removal of mineral grains and weakening from increased porosity. Granular decomposition is manifest in the formation of weathering rinds. Analysis of interactions between weathering indices indicates that rind accumulation is limited by microerosion.A conceptual model is proposed that illustrates the temporal interrelationships between in situ and erosional facets of microweathering in two contrasting mineral assemblages. The model proposes that cyclic processes of in situ disintegration, decomposition, and erosion are at work. The relative balance between these processes varies with lithology so that in more resistant quartz-rich rocks the net effect is minimal surface lowering and accumulation of weathering rind. In weaker, amphibolitic and micaceous rocks, the net effect is greater surface lowering and minimal accumulation of weathering rind. The results of the research demonstrate the important influence of rock properties, notably mineral composition, in postglacial microweathering of crystalline bedrock in a periglacial environment.  相似文献   

3.
Rates of sediment supply by landsliding to an alluvial channel in a small catchment in central Switzerland were estimated over an 11-month study period. Fluvial sediment transport in the channel is independently monitored at the upstream and downstream ends of the study reach, yielding a unique opportunity to quantitatively compare the volume of sediment supplied to the channel with the volume in fluvial transport. Landslide-derived sediment discharge to the channel was greatest during the winter and spring months, while most of the fluvial sediment transport occurred during short, intense summer storms. Approximately 98 m3 of sediment was delivered directly to the study reach by landsliding,  80 m3 was transported into the reach from upstream, and  70 m3 was transported out of the reach. Thus, there was a net accumulation of  100 m3 of sediment during the 11-month study. Decadal-scale channel aggradation was independently assessed by comparing channel longitudinal profiles in 1993 and 2004. During this 11-year period, a total of  1500 m3 of sediment has accumulated in the study reach. Aggradation has occurred largely in two broad zones that correspond with both the locations of major landslide complexes and reaches of high channel slope, indicating that hillslope sediment input left an imprint on the morphology of the channel bed that appears to be stable over at least decadal time scales.  相似文献   

4.
At the end of March 2006, the Czech Republic (CZ) witnessed a fast thawing of an unusually thick snow cover in conjunction with massive rainfall. Most watercourses suffered floods, and more than 90 shallow landslides occurred in the Moravian region of Eastern CZ, primarily in non-forested areas. This region, geologically part of the Outer Western Carpathians, is prone to landslides because the bedrock is highly erodible Mesozoic and Tertiary flysch.The available meteorological data (depth of snow, water equivalent of the snow, cumulative rainfall, air and soil temperatures) from five local weather stations were used to construct indices quantitatively describing the snow thaw. Among these, the Total Cumulative Precipitation (TCP) combines the amount of water from both thawing snow and rainfall. This concurrence of rain and runoff from snow melt was the decisive factor in triggering the landslides in the spring.The TCP index was applied to data of snow thaw periods for the last 20 years, when no landslides were recorded. This was to establish the safe threshold of TCP without landslides. The calculated safe threshold value for the region is ca. 100 mm of water delivered to the soil during the spring thaw (corresponding to ca. 11 mm day− 1). In 2006, 10% of the landslides occurred under or at 100 mm of TCP. The upper value of 155 mm covered all of the landslides.  相似文献   

5.
为比较不同气水比下各类型人工湿地的除污效果,选取火山石、炉渣和牡蛎壳作为人工湿地构建基质,研究两种人工湿地(表面流和潜流人工湿地)在不同气水比(0,2,4,6,8)下对污水的净化效果。结果表明:潜流型人工湿地对COD、NH_4~+-N及TP的去除率均高于表面流人工湿地;尤其是在COD的去除过程中,当气水比≥4时,潜流式湿地对污染物的去除效果显著高于表面流人工湿地。此外,适当曝气可显著提高人工湿地对COD、NH_4~+-N及TP的去除率,气水比为4时,表面流和潜流人工湿地对COD及TP的去除率显著高于气水比为0和2时的去除率。对NH_4~+-N而言,表面流和潜流人工湿地分别在气水比为8和6时达到最大去除率。气水比和人工湿地类型的交互作用对污染物的去除率影响不显著,在实际工程中可以忽略组合效应,致力于确定湿地类型及气水比各自对湿地除污效果的最优条件。  相似文献   

6.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river.  相似文献   

7.
This paper explores the effects of hillslope mobility on the evolution of a 10-km2 drainage basin located at the northern border of the Swiss Alps. It uses geomorphologic maps and the results of numerical models that are based on the shear stress formulation for fluvial erosion and linear diffusion for hillslope processes. The geomorphic data suggest the presence of landscapes with specific cross-sectional geometries reflecting variations in the relationships between processes in channels and on hillslopes. In the headwaters, the landscape displays parabolic cross-sectional geometries indicating that mass delivered to channels by hillslope processes is efficiently removed. In the trunk stream portion, the landscape is (i) V-shaped if the downslope flux of mass is balanced by erosion in channels (i.e. if mass delivered to channels by hillslope processes is efficiently removed) and (ii) U-shaped if in-channel accumulation of hillslope-derived material occurs. This latter situation indicates a non-balanced mass flux between processes in channels and on hillslopes.Information about the spatial pattern of the postglacial depth of erosion allows comparative estimates to be made about the erosional efficiency for the various landscapes that were mapped in the study area. The data suggest that the erosional potential and sediment discharge are reduced for the situation of a non-balanced mass flux between processes in channels and on hillslopes. These findings are also supported by the numerical model. Indeed, the model results show that high hillslope mobility tends to reduce the hillslope relief and to inhibit dissection and formation of channels. In contrast, stable hillslopes tend to promote fluvial incision, and the hillslope relief increases. The model results also show that very low erosional resistance of bedrock promotes backward erosion and steepening of channel profiles in headwaters. Beyond that, the model reveals that sediment discharge generally increases with decreasing erosional resistance of bedrock, but that this increase decays exponentially with increasing magnitudes of fluvial and hillslope mobilities. Very high hillslope diffusivities even tend to reduce the erosional potential of the whole watershed. It appears that besides rates of base-level lowering, factors limiting sediment discharge might be the nonlinear relationships between processes in channels and on hillslopes.  相似文献   

8.
Through the alteration of the physical characteristics of a landscape, such as the destruction of vegetation and the formation of a hydrophobic layer, a fire can dramatically amplify erosion rates. On the basis of field observations, it has been proposed that the deposition of a layer of ash on the ground surface can enhance the erosion of mountainous terrain by surface runoff and might even be a necessary condition for the generation of progressively bulked debris flows. In this study, a flume was constructed to investigate the role of ash in increasing both the volume and the transport capacity of runoff. The experiments demonstrated that the presence of ash on the soil surface reduces the ability of flowing water to infiltrate; this effect is even greater when the ash has been pre-wetted. In addition, the ability of ash slurries to infiltrate decreases with increasing ash concentration. The results also indicate that the transport capacity of runoff is enhanced by the incorporation of ash into the flow because of the increased fluid density. However, the addition of ash reduces the boundary Reynolds number such that, at high ash concentrations and with fine-grained sediment, sediment transport declines as the flow becomes hydraulically smooth. The experimental results were also used to evaluate the ability of steep flow fronts, a common characteristic of debris flows and flash floods, to increase sediment transport rates. Finally, it is proposed that ash slurries may evolve into progressively bulked debris flows through a positive feedback between fluid density, transport capacity, and erosivity.  相似文献   

9.
In 2013, demand for coal in the UK was 60 million tonnes. Of this, 12.7 million tonnes (21%) came from indigenous sources; the majority of which was from surface mining (8.6 million tonnes). Many planning applications for surface mining of coal and the coal extraction that follows, are often a source of conflict with the communities who live within shallow coalfield areas. Policies which enforce a gap, or ‘separation zone’, between communities and surface coal mining operations exist in Wales and Scotland, but do not exist in England. This paper examines the effect of applying separation zones on the availability of shallow coal resources within two study areas; one within the South Wales Coalfield, the other within the Midlands Coalfield (comprising the Yorkshire, Nottinghamshire and North Derbyshire Coalfield areas). Density profiles and a shape-index algorithm are used to compare and contrast settlement morphology (i.e. shape or footprint) and distribution to determine whether they have a bearing on the areal extent of any potential separation zone applied. The implications on the availability of shallow coal resources of applying different separation zone distances around settlements within these two areas are explored. Results reveal that although the settlement morphology is important in determining the area of the separation zone, and has greatest influence in the South Wales Coalfield, the area of coal resource sterilised by the application of separation zones is greatest in the Midlands Coalfield due to it having a higher proportion of urban development situated on the surface extent of the shallow coal resource.  相似文献   

10.
中国空中廊道划设与时空拥堵识别及其航线流量影响   总被引:3,自引:0,他引:3  
董雅晴  路紫  刘媛  张秋娈 《地理学报》2018,73(10):2001-2013
航空运输的迅速发展使空中交通流增加,空中廊道因能容纳高密度交通流而成为支持空域资源充分开发利用的一种新技术,空中廊道拥堵时段和拥堵区段的识别是廊道上车道分配和开合操作的基础。在回顾空中廊道与交通拥堵相关研究后,构建了由空中廊道划设、拥堵状态识别、航线流量影响组成的研究方法。依据高流量航线确定空中廊道位置、依据距离约束条件确定航线参与者,合并划设出全国14条空中廊道;进而通过时空数据计算、时空图编绘、网格频数筛选及划分阈值设定等步骤,遵照重叠次数及热格频数的指示规则,对拥堵时段和拥堵区段进行识别;并通过规模值和汇聚值两个指标分析高流量航线的拥堵影响。研究发现:拥堵时段呈现为全天多峰“波浪型”分散分布及高峰后端集聚的结构特征;拥堵区段整体呈现为不平衡覆盖和交汇节点集中分布的结构特征,其中高拥堵程度的空中廊道呈现为一个斜体“N”字型框架,框架上为小区段集中的不完全贯通;时空交互上,拥堵区段存在单一时段和多时段重叠两种类型,多个廊道的不同拥堵区段存有共同拥堵时段。高流量航线在空中廊道拥堵中起相对决定性作用,且在抵港和离港两个方向上的影响不均衡。空中交通拥堵识别可为中国未来空域资源时空动态评估和空中廊道建设提供依据。  相似文献   

11.
站点密度对泥石流当日雨量和前期有效雨量计算的影响   总被引:1,自引:0,他引:1  
张国平  晁瑗  许凤雯  赵琳娜 《地理研究》2011,30(7):1237-1243
研究气象站点密度在当日雨量和前期有效雨量因子内插中的影响程度,对提高对这2个因子的内插精度有重要的意义。本文针对我国东南地区87个泥石流灾害点和207个站点的降水资料,建立站点密度在5%~100%间变化的空间采样方案,采用反距离加权法(IDW)计算不同站点密度下泥石流灾害点的当日雨量和前期有效雨量。利用分位数方法对站点密度与当日雨量和前期有效雨量的关系进行分析,结果表明:诱发泥石流灾害的当日雨量和前期有效雨量的内插值,均随着气象站点密度的降低呈减少趋势;前期有效雨量的内插值相对于当日雨量的内插要稳定一些。在站点密度大于5%的情况下内插的前期有效雨量可以保持60%以上的雨量值,而当日雨量只大于30%。  相似文献   

12.
台特玛湖干涸湖盆区风蚀沙漠化快速发展,发育了以新月形沙丘和风蚀坑(主要为槽状坑和碟状坑)为主的风沙地貌。风蚀坑的发育不仅受来流风影响,还与坑内三维流场有关。基于风洞实验和计算机流体力学(Computational fluid dynamics, CFD)数值模拟,对风蚀坑三维流场进行了探究。结果表明:(1) 从入风侧到出风侧,槽状风蚀坑和碟状风蚀坑底面的风速均呈减速—加速—减速—加速的变化模式,上口所在水平面的风速变化呈加速—减速—加速变化模式,上口气流压强也相应地发生变化,槽状风蚀坑和碟状风蚀坑整体呈低压—高压—低压变化模式,其中槽状坑变化更为明显。(2) 两种形状风蚀坑对气流均具有一定的吸附效应,使坑外一定范围的风沙流被吸入坑内,聚集能量和风沙流,加剧风蚀坑风蚀发育。(3) 风蚀坑加剧了地表侵蚀,侵蚀程度与风蚀坑尺度有关,风蚀坑尺度越大,对地表侵蚀越强。本文直观展示了两种典型风蚀坑中的三维速度、压力、风沙流流向分布,揭示了风蚀坑的风沙流吸附机制,研究结果可加深对风蚀坑形态动力学的理解,也可为内陆干涸湖盆沙漠化防治提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号