首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Computations of the evolution of the distributions of the size and degree of aromatization of interstellar dust grains, destruction by radiation and collisions with gas particles, and fragmentation during collisions with other grains are presented. The results of these computations are used to model dust emission spectra. The evolution of an ensemble of dust particles sensitively depends on the initial size distribution of the grains. Radiation in the considered range of fluxes mainly aromatizes grains. With the exception of the smallest grains, it is mainly erosion during collisions with gas particles that leads to the destruction of grains. In the presence of particle velocities above 50 km/s, characteristic for shocks in supernova remnants, grains greater than 20 Å in size are absent. The IR emission spectrum changes appreciably during the evolution of the dust, and depends on the adopted characteristics of the grains, in particular, the energy of their C–Cbonds (E0). Aromatic bands are not observed in the near-IR (2–15 μm) when E0 is low, even when the medium characteristics are typical for the average interstellarmedium in our Galaxy; this indicates a preference for high E0 values. The influence of the characteristics of the medium on the intensity ratios for the dust emission in various photometric bands is considered. The I3.4/I11.3 intensity ratio is most sensitive to the degree of aromatization of small grains. The I3.3/I70+160 ratio is a sensitive indicator of the contribution of aromatic grains to the total mass of dust.  相似文献   

2.
Identification and characterization of aeolian deposits in arid environments provide information on mechanisms of loess and sand accumulation. The objectives of this study were to (i) identify the distribution of aeolian deposits, (ii) discriminate loess and sand deposits using granulometric data, and (iii) describe the aeolian deposition in Sarakhs area, northeastern Iran. Particle size distributions of 26 surface samples were determined using a laser grain-size analyzer. Fine sand, very fine sand, and very coarse silt were dominant fractions in studied sediments, and the sum of these fractions ranged from 46.9% in loess deposits to 93.8% in sand dunes. The mean grain size (M z ) of sand dunes ranged from 3.31 to 3.54 ?, which gradually changed to 4.09 to 5.50 ? in loess deposits. Sorting, skewness, and kurtosis ranged from 0.84 to 1.94 ?, 0.18 to 0.49, and 0.76 to 2.38, respectively. Aeolian deposits in the area resulted in the incorporation of Hariroud River system and Kopeh Dagh Mountains for aeolian particle production and accumulation. Alluvial comminution in Hariroud River is suggested the main mechanism of sand and silt production and flood plain environment the main reservoir of these particles. The mountains of Kopeh Dagh act as a barrier and play a key role for sand and loess accumulation.  相似文献   

3.
The Junipers phoenicea, which covers 70 % of the Jabal Al Akhdar (Green Mountain) in Cyrene on the northeast coast of Libya, has deteriorated over large scales. To deal with this problem, the images of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) in conjunction with the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) were used to map factors controlling the J. phoenicea mortality using a set of automated algorithms and tools. These factors include altitude, slope, aspect, curvature, drainage pattern, seawater intrusion, and land cover. As a first step, changes of J. phoenicea and land cover during the period from the year 2000 to 2015 were mapped. The results showed a sharp decline in J. phoenicea covering an area of 396 km2 (22 %) of the total area. The result also showed that areas at a lower elevation with steep slope and faced to the south and southeast directions have a higher probability of J. phoenicea distribution. The spatial analysis showed a positive correlation between wetness and the intensity of J. phoenicea mortality. The results also show that altitude and slope have the most influencing power on the J. phoenicea morality. This study is of great help for decision makers and agriculture engineers and permits a better understanding of ecological and biomass changes in the Jabal Al Akhdar, Libya, over a regional scale.  相似文献   

4.
5.
A systematic analysis ofmethods for computing the trajectories of solid-phase particles applied in modern astrophysics codes designed for modeling gas–dust circumstellar disks has been carried out for the first time. Themotion of grains whose velocities are determinedmainly by the gas drag, that is, for which the stopping time or relaxation time for the velocity of the dust to the velocity of the gas tstop is less than or comparable to the rotation period, are considered. The methods are analyzed from the point of view of their suitability for computing the motions of small bodies, including dust grains less than 1 μm in size, which are strongly coupled to the gas. Two test problems are with analytical solutions. Fast first order accurate methods that make it possible to avoid additional restrictions on the time step size τ due to gas drag in computations of the motion of grains of any size are presented. For the conditions of a circumstellar disk, the error in the velocity computations obtained when using some stable methods becomes unacceptably large when the time step size is τ > tstop. For the radial migration of bodies that exhibit drifts along nearly Keplerian orbits, an asymptotic approximation, sometimes called the short friction time approximation or drift flux model, gives a relative error for the radial-velocity computations equals to St2, where St is the Stokes number, the ratio of the stopping time of the body to some fraction of the rotation period (dynamical time scale) in the disk.  相似文献   

6.
We investigate the influence of small-scale asphericity of the surfaces of dust grains on the characteristics of the two deepest absorption bands observed in the spectra of protostellar objects and stars (the 3.1 μm water-ice and 9.7 μm silicate bands). The model used has composite particles in the form of radially inhomogeneous spheres with intermediate layers in which the index of refraction changes. The observed band widths and the ratios of the optical depths at the band centers can be explained if the grains are composed of small particles consisting of silicate cores with thin ice mantles and rough surfaces. The grain surface roughness considerably broadens the profile of the silicate band.  相似文献   

7.
Net to gross (NTG) is an important parameter in evaluating the volumes of hydrocarbon in place (VHIP) in reservoirs, and proper evaluation of this parameter will lead to significant accuracy in the estimated reserves. The use of conventional petrophysical log evaluations often does not provide sufficient resolution for net sand analysis of reservoirs, especially in laminated reservoir rocks. The uncertainties associated with log-derived net-to-gross estimates arise from the petrophysical shale volume (V sh) cutoffs used in deriving the net sand count over a reservoir interval. One way of improving the net-to-gross estimates is by using a model that calibrates log-derived net to gross to a core equivalent, which is the more accurate representation of net sand counts. In this study, a model for calibrating log-derived net to gross to a core equivalent based on genetic units and facies associations of reservoir rocks in three wells (wells 7, 36, and K008) was established. Ultraviolet core photographs show a good contrast between hydrocarbon-stained sandstones and shales, and combining it with white light-slabbed core images facilitated a manual net sand count of the core photographs on a bed-by-bed basis. Petrophysical shale volume (V sh) cutoff derived from two volumes of shale indicators was applied to generate net sand counts, which were used to get log-derived net-to-gross values. Then, the net to gross from core images and petrophysical clay volume (V sh) analysis were compared by facies associations, and this comparison yielded a reliable core-calibrated net-to-gross model, which reduces the uncertainties in net-to-gross values estimated from V sh cutoffs. The results show that for the distributary channel sands, net to gross derived using V sh cutoff results in an underestimation of net to gross by about 6–10 % when compared with the core-calibrated net to gross, while for the upper shoreface units, V sh cutoff overestimates net to gross by about 7–10 % when compared to its core-calibrated equivalent.  相似文献   

8.
It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity V rot sin i and underestimation of the component mass ratio q = M x /M v . A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes M x and visual components M v in low-mass X-ray binary systems containing black holes. Taking into account the tidal–rotational distortion of the stellar shape can significantly increase the mass ratios q = M x /M v , reducing M v , while M x changes only slightly. The resulting distribution of M v attains its maximum near M v ? 0.35M , in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of M x also differs strongly from the mass distribution for massive stars in the Galaxy.  相似文献   

9.
Soil particle-size distribution (PSD) is an important index for soil classification because it has large influences on soil hydrological characteristics, salinity, fertility, erodibility, nutrient content, swelling/shrinking, and degradation. We present a case study of the fractal characteristics of soil PSD and its relationship with soil properties of gravel-mulched fields in an arid area of northwestern China using single-fractal calculation. Particle size was unimodally distributed within the narrow range of 20–100 μm, with silt as the most common component. Horizontally, silt content was the highest, followed by sand and clay contents. Vertically, clay content increased with depth, while there were no obvious change rules for both silt and sand contents. The volume fractal dimension (D) of PSD ranged from 2.4307 to 2.5260, increased with the content of fine particles but decreased with the content of coarse particles. D was correlated positively with soil-water content and salt content and negatively with bulk density. The saturated soil-water content was strongly correlated negatively with silt content (p < 0.01) and positively with sand content (p < 0.01). The results indicate that D can be a potential indicator of the physical and chemical properties of soil and can also provide a theoretical basis and technical guidance for the effective use and management of the region.  相似文献   

10.
The development of the bioaugmentation during the phytoremediation of contaminated water with diesel in pilot horizontal subsurface flow constructed wetlands was investigated for 63 days. The objective of this study was to examine the enrichment of rhizobacteria in a pilot-scale system for efficient treatment of total petroleum hydrocarbon (TPH) effluent. A consortium of three rhizobacteria strains (Bacillus aquimaris, Bacillus anthracis and Bacillus cereus), which were able to utilize hydrocarbon compounds as sole carbon sources, was injected into the constructed wetlands (batchwise operation) planted with Scirpus grossus. The TPH removals from water, without or with the addition of rhizobacteria, were found to be 72 and 84%, while from sand was found to be 59 and 77%, for each treatment, respectively. These results showed that the rhizobacteria strains could enhance S. grossus growth by decreasing diesel stress and protecting S. grossus against diesel, with 12 and 18% additional TPH removal from water and sand, respectively. Our results demonstrate that S. grossus is potential to improve the phytoremediation of hydrocarbon contaminants through inoculation with effective rhizobacterial strains.  相似文献   

11.
This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane.  相似文献   

12.
赵健楠  肖龙 《地球科学》2016,41(9):1572-1582
火星表面的古湖泊地貌能够反映火星古气候和古环境的特征及变化,对于研究火星是否曾经存在宜居环境具有重要意义.随着中国火星探测计划的提出和实施,详细了解火星古湖泊的研究进展尤为重要.总结了火星古湖泊的研究现状,重点阐述了当前对火星古湖泊的沉积地貌、矿物成分、形成年龄、分布特征等方面的研究进展.在综合分析前人研究成果的基础上,提出火星古湖泊研究中存在的主要问题,认为未来应着重在古湖泊的详细调查与地质填图、古湖泊的后期改造作用、其他类型古湖泊的识别分析以及火星与地球古湖泊的对比等方面开展研究.   相似文献   

13.
Particles can be accelerated to ultrahigh energies E≈1021 eV in moderate Seyfert nuclei. This acceleration occurs in shock fronts in relativistic jets. The maximum energy and chemical composition of the accelerated particles depend on the magnetic field in the jet, which is not well known; fields in the range ~5–1000 G are considered in the model. The highest energies of E≈1021 eV are acquired by Fe nuclei when the field in the jet is B≈16 G. When B~(5–40) G, nuclei with Z<10 are accelerated to E≤1020 eV, while nuclei with Z≥10 acquire energies E≥2×1020 eV. Only particles with Z≥23 acquire energies E≤1020 eV when B~1000 G. Protons are accelerated to E<4×1019 eV, and do not fall into the range of energies of interest for any magnetic field B. The particles lose a negligible amount of their energy in interactions with infrared photons in the accretion disk; losses in the thick gas-dust torus are also negligible if the luminosity of the galaxy is L≤1046 erg/s and the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the axial ratio of the galactic disk is comparatively high. The particles do not lose energy to curvature radiation if their deviations from the jet axis do not exceed 0.03–0.04 pc at distances from the center of R≈40–50 pc. Synchrotron losses are small, since the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) primarily in the direction of motion. If the model considered is valid, the detected cosmic-ray protons could be either fragments of Seyfert nuclei or be accelerated in other sources. The jet magnetic fields can be estimated both from direct astronomical observations and from the energy spectrum and chemical composition of cosmic rays.  相似文献   

14.
A lack of understanding exists of the origin and textural characteristics of Saudi Arabian Red Sea coastal sediments. This paper concerns the southern coastline of Jizan on the Saudi Red Sea. It is some 160 km long characterised by either narrow rocky headlands with intermittent pocket beaches or wide low-lying beaches dissected by wadis. Granulometric testing of samples from 135 locations showed that beach sand size was mainly very fine to medium grained (M z = 3.93 Ø), sorting ranged from 1.65 to 0.41 and skewness values from ?051 to 0.39, being mainly negative; dune sands were medium to fine grained (M z = 1.13 Ø; average sorting 2.8), while skewness variations within dune samples indicated symmetrical to fine skewed values (б Ι = 0.55 to 0.89). Most foreshore samples were derived from wadis. Wadi mud levels can be high, e.g. Baysh (84%), and wadi Samrah (90%) with mean grain size ranging from very fine to medium sand (M z = 3.9 Ø), sorting being well to poor (0.45 to 1.52) due to sediment influxes. Sabkha had a wide range of sand/mud and significantly higher carbonate percentages than other environments. Sediment source differences and littoral reworking contributed to grain size variation. The carbonate content varied between 1.5 and 31.5% due to hinterland contributions, and spatial analysis showed increasing quantities of carbonate minerals towards the south. On the wider geographical front, findings from Jizan are similar to those of the Northern United Arab Emirates (UAE), including sabkhas, being composed of sand, skeletal carbonate, fine fluvial material and wind-blown silt and clay components of wadi origin. Further work on the northeastern Red Sea edge can hopefully confirm these findings.  相似文献   

15.
This study quantifies the influence of various intrinsic soil properties including particle roundness, R, sphericity, S, 50% size by weight, D 50, coefficient of uniformity, C u, and the state property of relative density, D r, on the compression and recompression indices, C c and C r, of sands of various geologic origins at pre-crushing stress levels. Twenty-four sands exhibiting a wide range of particle shapes, gradations, and geologic origins were collected for the study. The particle shapes were determined using a computational geometry algorithm which allows characterization of a statistically large number of particles in specimens. One dimensional oedometer tests were performed on the soils. The new data was augmented with many previously published results. Through statistical analyses, simple functional relationships are developed for C c and C r. In both cases, the models utilized only R and D r since other intrinsic properties proved to have lesser direct influence on the compression indices. However, previous studies showed that the contributions of S and C u are felt through their effects on index packing void ratios and thus on D r. The accuracy of the models was confirmed by comparison of predicted and observed C c and C r values.  相似文献   

16.
Gully systems and watersheds are geomorphic units with clear boundaries that are relatively independent of basin landscapes and play an important role in natural geography. In order to explore the morphological characteristics of gully systems and watersheds in the Dry-Hot Valley [South West (SW) China], gullies are interpreted from online Google images with high resolution and watersheds are extracted from digital elevation model at a scale of 1:50,000. The results show that: (1) There are 17,382 gullies (with a total area of 1141.66 km2) and 42 watersheds in the study area. (2) The average gully density of the study area (D) is 4.29 km/km2, gully frequency (F) is 14.39 gullies/km2, the branching ratio (B) is 5.13, the length ratio (L) is 3.12, and the coefficient of the main and tributary gullies (M) is 0.06. The degree of gully erosion is strong to extremely strong, the main development intensity of gully erosion ranges from intense to moderate, and the type of gully system is tributary. (3) The watershed areas (A) are between 0.39 and 96.43 km2, the relief ratio (R) is from 0.10 to 0.19, the circularity ratio (C) is from 0.30 to 0.83, the texture ratio (T) is from 0.82 to 39.35, and the dominant geomorphological texture type is fine. (4) There is a quantitative relationship between F and D:F?=?0.624D2 (R?=0.84) and T is closely related to D, F, M (R2?>?0.7). A, R and C are related to M (R2?>?0.5). The development of gully systems is the result of coupling effects between multiple factors. In this area, the degree of erosion and the condition of the main and tributary gullies can be controlled by the degree of topographic breakage in the watershed, which provides some theoretical basis for the evaluation of gully erosion by the latter. In addition, the scale, relief, and shape have a significant impact on the locations of the main and tributary gullies. For tributary gullies, attention should be paid to the interception and control of runoff and sediment in the small confluence branches in order to prevent gully expansion and head advance. These features can inform the development of targeted measures for the control of soil erosion.  相似文献   

17.
The objective of this study was to evaluate the effect of mine tailings composition on shear behavior and shear strength of co-mixed mine waste rock and tailings (WR&T). Crushed gravel was used as a synthetic waste rock and mixed with four types of tailings: (1) fine-grained garnet, (2) coarse-grained garnet, (3) copper, and (4) soda ash. Co-mixed WR&T specimens were prepared to target mixture ratios of mass of waste rock to mass of tailings (R) such that tailings “just filled” interparticle void space of the waste rock (i.e., optimum mixture ratio, R opt). Triaxial compression tests were conducted on waste rock, tailings, and mixed waste at effective confining stresses (\(\sigma_{\text{c}}^{{\prime }}\)) ranging from 5 to 40 kPa to represent stresses anticipated in final earthen covers for waste containment facilities. Waste rock and co-mixed WR&T specimens were 150 mm in diameter by 300 mm tall, whereas tailings specimens were 38 mm in diameter by 76 mm tall. Shear strength was quantified using effective stress friction angles (?′) from undrained tests: ?′ for waste rock was 37°, ?′ for tailings ranged from 34° to 41°, and ?′ for WR&T mixtures ranged from 38° to 40°. Thus, shear strength of co-mixed WR&T was comparable to waste rock regardless of tailings composition. Shear behavior of WR&T mixtures was a function of R and tailings composition. Tailings influenced shear behavior for R < R opt and when tailings predominantly were silt. Shear behavior was influenced by waste rock for R ≥ R opt and when tailings predominantly were sand or included clay particles.  相似文献   

18.
Terrestrial latent heat flux (LE) in the Three-River Headwaters region (TRHR) of China plays an essential role in quantifying the amount of water evaporation and carbon sink over the high altitude Tibetan Plateau (TP). Global warming is expected to accelerate terrestrial hydrological cycle and to increase evaporation. However, direct field observations are lacking in this region and the long-term variability in LE remains uncertain. In this study, we have revised a semi-empirical Penman LE algorithm based on ground eddy covariance (EC) observations from an alpine grass site and provided new satellite-based evidence to assess LE change in the TRHR during 1982–2010. Our results show that the average annual terrestrial LE in the TRHR is about 38.8 W/m 2 and there is no statistically significant change in annual LE from 1982 to 2010. We also found that during the same time period, terrestrial LE over the east region of the TRHR significantly decreased, on average, by 0.7 W/m 2 per decade, which was driven primarily by the surface incident solar radiation (Rs) limitation, offsetting the increased LE over the west region of the TRHR caused by the increased precipitation (P) and soil moisture (SM).  相似文献   

19.
A review and comparative analysis of results from studies of the effects of scattering on the interstellar medium using giant pulses of the Crab Nebula pulsar (B0531+21) are presented. This analysis was based on eight epochs of Very Long Baseline Interferometry (VLBI) radio observations carried out as part of the scientific program of the Radio Astron mission during 2011–2015. The scintillation timescale t scint and spectral index γ for the power-law energy distribution of the pulses were obtained for each observing epoch. The measured scintillation timescales are t scint = 7.5?123 s at 1668 MHz and t scint = 2.9 s at 327 MHz. The spectral indices are ?1.6...?2.5. The frequency and time characteristics of the scattering were measured using two independent methods: based on the decorrelation bandwidth Δν d and the scattering timescale τ SC. The angular size of the scattering disk θ H of the pulsar was obtained, the phase structure functions constructed, and the distance to the effective scattering screen estimated. The derived diameter of the scattering disk θ H at 1668 MHz ranges from 0.4 to 1.3 mas, while the scatteringdisk diameter at 327 MHz is 14.0 mas. The measured distance to the effective scattering screen ranges from 0.7 to 1.9 kpc, and varies from observation to observation in the same way as the scattering timescale and decorrelation bandwidth: τ SC ≈ 0.9?5.8 μs and Δν d ≈ 40.7?161 kHz at 1668 MHz. The scattering timescale and decorrelation bandwidth at 327 MHz are 2340 μs and 68 Hz.  相似文献   

20.
Concrete is a heterogeneous, multiphase, composite material, and the size and shape of the coarse aggregate used have an important influence on the rheological properties of the concrete. The aggregate is usually simulated with spherical particles in the discrete element method (DEM). However, the shape of real aggregates is uncontrolled and polytropic. Therefore, spherical particles hardly reflect the actual situation. To comprehensively analyze the rheological characteristics of self-compacting concrete (SCC), experimental and simulated tests of slump-flow and L-box tests of different performative SCC are investigated. An efficient and fast random polyhedron particle generation method is proposed to simulate the real shape of the coarse aggregate, which is close to the actual state. The slump-flow and L-box tests of SCC are simulated by using the established discrete element model and the irregular generating particle method. The slump-flow test shows that the generation method could effectively simulate the flow state of concrete, and the L-box test evaluates the passing ability of SCC. The rheological characteristics of the yield stress τ0 and plastic viscosity η are verified as Bingham model parameters, and the numerical results are perfectly consistent with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号