共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Chen Pei-sheng Gao Heng Bao Meng-xian Xiong Guang-zhu 《Chinese Astronomy and Astrophysics》1992,16(4):399-406
The JHKL' photometry and 2.3–4 μm spectrophotometry of some M giants, S type stars and carbon stars are presented in this paper. It is found that in combination with IRAS data, the energy spectra in 1–100 μm of S type stars are intermediate between those of M giants and carbon stars, which are obviously different. The spectrophotometry in the near infrared shows that, besides carbon stars, which have HCN and C2H2 strong absorptions at 3.1 μm, some S type stars have the similar but weaker absorption in the same spectral region. However, no trace of any absorption at 3.1 μm can be seen in M giants. These results probably provide more evidence for the M-S-C sequence in the late stage of stellar evolution. 相似文献
5.
An atlas of airglow spectrograms obtained in the USSR during the IGY is presented. 相似文献
6.
In this paper, the monthly counts of flare index in the northern and southern hemispheres are used to investigate the hemispheric variation of the flare index in each of solar cycles 20–23. It is found that, (1) the flare index is asymmetrically distributed in each solar cycle and its asymmetry is a real phenomenon; (2) the flare index in the northern hemisphere begins earlier than that in the southern hemisphere in each of solar cycles 20–23, and the phase shifts between the two hemispheres show an odd‐even pattern; (3) although the flare index dominating in a hemisphere does not mean that it leads in phase in this hemisphere in individual solar cycle, these two features have an intrinsic relationship. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
P. Gronkowski 《Astronomische Nachrichten》2002,323(1):49-56
Cometary outbursts, sudden increases in luminosity have not been clearly explained so far and their source is still a mystery. Various possible mechanisms as a source of cometary outbursts at large distances from the Sun have been considered. It has been stated that plausible mechanisms are the polymerization of HCN and the amorphous water ice transformation combined with electrostatic destruction of cometary grains in the head of the comet. The calculations have been carried out for a large range of cometary parameters and it has been shown that the proposed scenario of the outburst gives a jump in the comet brightness which is consistent with the real jump observed during the 29P/Schwassmann‐Wachmann 1 outbursts. 相似文献
8.
V. Braito J. N. Reeves G. Dewangan I. George R. Griffiths A. Markowitz K. Nandra D. Porquet A. Ptak T. J. Turner T. Yaqoob K. Weaver 《Astronomische Nachrichten》2006,327(10):1067-1070
We present the results of the simultaneous XMM‐Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG–5‐23‐16, which is one of the best known examples of a relativistically broadened iron Kα line. We find that: a) the soft X‐ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ∼44000 km/s. This latter component has an EW ∼50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ∼40°. We found evidence of a possible sporadic absorption line at ∼7.7 keV which, if associated with Fe XXVI Kα resonance absorption, is indicative of a possible high velocity (v ∼ 0.1c) outflow. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
10.
11.
Ernst Zinner 《Meteoritics & planetary science》2010,45(9):1527-1528
12.
13.
M. Küker 《Astronomische Nachrichten》1998,319(3):182-182
14.
We discuss the concept and the performance of a powerful future ground-based astronomical instrument, 5@5 – a 5 GeV energy threshold stereoscopic array of several large imaging atmospheric Cherenkov telescopes (IACTs) installed at a very high mountain elevation of about 5 km a.s.l. – for the study of the γ-ray sky at energies from approximately 5 to 100 GeV, where the capabilities of both the current space-based and ground-based γ-ray projects are quite limited. With its potential to detect the “standard” EGRET γ-ray sources with spectra extending beyond several GeV in exposure times from 1 to 103 s, such a detector may serve as an ideal “gamma-ray timing explorer” for the study of transient non-thermal phenomena like γ-radiation from AGN jets, synchrotron flares of microquasars, the high energy (GeV) counterparts of gamma ray bursts, etc. 5@5 also would allow detailed γ-ray spectroscopy of persistent nonthermal sources like pulsars, supernova remnants, plerions, radiogalaxies, and others, with unprecedented for γ-ray astronomy photon statistics. The existing technological achievements in the design and construction of multi(1000)-pixel, high resolution imagers, as well as of large, 20 m diameter class multi-mirror dishes with rather modest optical requirements, would allow the construction of such a detector in the foreseeable future, although in the longer terms from the point of view of ongoing projects of 100 GeV threshold IACT arrays like HESS which is in the build-up phase. An ideal site for such an instrument could be a high-altitude, 5 km a.s.l. or more, flat area with a linear scale of about 100 m in a very arid mountain region in the Atacama desert of Northern Chile. 相似文献
15.
16.
17.
Bevan M. French 《Meteoritics & planetary science》2005,40(1):139-141
18.
K. G. Strassmeier M. Weber T. Granzer L. Schanne J. Bartus I. Ilyin 《Astronomische Nachrichten》2014,335(9):904-934
We present continuous and time‐resolved R = 55 000 optical échelle spectroscopy of ε Aurigae from 2006–2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996–2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high‐resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters Teff = 7395 ± 70 K, log g ≈ 1, and [Fe/H] = +0.02 ± 0.2 with ξt = 9 km s–1, ζRT = 13 km s–1, and v sin i = 28 ± 3 km s–1. The residual average line broadening expressed in km s–1 varies with a period of 62.6 ± 0.7 d, in particular at egress and after the eclipse. Two‐dimensional line‐profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center‐of‐intensity weighted radial velocities of individual spectral lines also show the 110‐d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center‐of‐intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson V I photometry on the other hand shows two well‐defined and phase‐coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and V I photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk‐rotation profile from 61 absorption lines and found that low disk eccentricity generally relates to low disk rotational velocity (but not always) while high disk eccentricity always relates to high velocity. There is also the general trend that the disk‐absorption in spectral lines with higher excitation potential comes from disk regions with higher eccentricity and thus also with higher rotational velocity. The dependency on transition probability is more complex and shows a bi‐modal trend. The outskirts of the disk is distributed asymmetrically around the disk and appears to have been built up mostly in a tail along the orbit behind the secondary. Our data show that this tail continues to eclipse the F0 Iab primary star even two years after the end of the photometric eclipse. High‐resolution spectra were also taken of the other, bona‐fide, visual‐binary components of ε Aur (ADS 3605BCDE). Only the C‐component, a K3‐4‐giant, appears at the same distance than ε Aur but its radial velocity is in disagreement with a bound orbit. The other components are a nearby (≈ 7 pc) cool DA white dwarf, a G8 dwarf, and a B9 supergiant, and not related to ε Aur. The cool white dwarf shows strong DIB lines that suggest the existence of a debris disk around this star. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
20.