首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Observations in polarized emission reveal the existence of large‐scale coherent magnetic fields in a wide range of spiral galaxies. Radio‐polarization data show that these fields are strongly inclined towards the radial direction, with pitch angles up to 35° and thus cannot be explained by differential rotation alone. Global dynamo models describe the generation of the radial magnetic field from the underlying turbulence via the so called α ‐effect. However, these global models still rely on crude assumptions about the small‐scale turbulence. To overcome these restrictions we perform fully dynamical MHD simulations of interstellar turbulence driven by supernova explosions. From our simulations we extract profiles of the contributing diagonal elements of the dynamo α ‐tensor as functions of galactic height. We also measure the coefficients describing vertical pumping and find that the ratio between these two effects has been overestimated in earlier analytical work, where dynamo action seemed impossible. In contradiction to these models based on isolated remnants we always find the pumping to be directed inward. In addition we observe that depends on whether clustering in terms of superbubbles is taken into account. Finally, we apply a test field method to derive a quantitative measure of the turbulent magnetic diffusivity which we determine to be ∼2 kpckms–1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Abstract— Microscopic planar deformation features (PDFs) in quartz grains are diagnostic of shock meta-morphism during hypervelocity impact cratering. Measurements of the poles of sets of PDFs and the optic axis of 25 quartz grains were carried out for a sample of the Loftarsten deposit from the Lockne area, Sweden. The most abundant PDFs observed in the sample from the Lockne area correspond to those found at known impact craters (i.e., ω (1013} and π (1012). This study confirms the previous suggestion that the Lockne structure is an impact crater. The Loftarsten is, therefore, interpreted as the final stage of resurge deposition after a marine impact at Lockne in the Middle Ordovician.  相似文献   

3.
Considering a plasma with an initially weak large scale field subject to nonhelical turbulent stirring, Zeldovich (1957), for two‐dimensions, followed by others for three dimensions, have presented formulae of the form 〈b2〉 = f(RM) . Such “Zeldovich relations” have sometimes been interpreted to provide steady‐state relations between the energy associated with the fluctuating magnetic field and that associated with a large scale or mean field multiplied by a function f that depends on spatial dimension and a magnetic Reynolds number RM. Here we dissect the origin of these relations and pinpoint pitfalls that show why they are inapplicable to realistic, dynamical MHD turbulence and that they disagree with many numerical simulations. For 2D, we show that when the total magnetic field is determined by a vector potential, the standard Zeldovich relation applies only transiently, characterizing a maximum possible value that the field energy can reach before necessarily decaying. In 3D, we show that the standard Zeldovich relations are derived by balancing subdominant terms. In contrast, balancing the dominant terms shows that the fluctuating field can grow to a value independent of RM and the initially imposed , as seen in numerical simulations. We also emphasize that these Zeldovich relations of nonhelical turbulence imply nothing about the amount mean field growth in a helical dynamo. In short, by re‐analyzing the origin of the Zeldovich relations, we highlight that they are inapplicable to realistic steady‐states of large RM MHD turbulence. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Abstract The 9 km diameter Red Wing Creek structure, North Dakota, is located within the oil-rich Williston Basin at 47°36′N and 103°33′W. Earlier geophysical studies indicated that this subsurface structure has a central uplift, surrounded by an annular crater moat, and a raised rim. Breccias were encountered during drilling between ~2000 and 2800 m depth in the central uplift area, and the presence of shatter cone fragments in drill core samples was suggested to indicate an impact origin of the Red Wing Creek structure. We studied the petrographic and geochemical characteristics of samples of well cuttings from two boreholes at the center of the structure: the True Oil 22–27 Burlington Northern and True Oil 11–27 Burlington Northern wells. We found planar deformation features (PDFs) in quartz with up to three sets of different crystallographic orientations in sandstone- and siltstone-dominated samples from the True Oil 11–27 borehole. U-stage measurements of the crystallographic orientations of the PDFs showed the occurrence of the shock-characteristic (0001), and orientations, with a dominance of (0001) and orientations. The relative frequencies of the orientations indicate a shock pressure of at least 12–20 GPa. These results provide unambiguous evidence for shock metamorphism at Red Wing Creek and confirm that the structure was formed by impact.  相似文献   

5.
White, pale-yellow and brown deposits occur on surfaces of fragments of the Norton County enstatite achondrite. X-ray powder analysis of these materials indicates that they consist of several calcium-bearing minerals: portlandite [Ca(OH)2], vaterite (CaCO3, hexagonal), calcite (CaCO3, trigonal) and bassanite (CaSO4-1/2 H2O). We suggest that these minerals formed by weathering of oldhamite (CaS), which we found to occur in Norton County. The occurrence of portlandite suggests that at low temperatures and in the terrestrial environment, hydrolysis of oldhamite is the most important first step in the weathering sequence. Subsequent carbonation of portlandite is thought to produce vaterite, and vaterite in turn might transform into calcite. Thus, we suggest a weathering sequence in the terrestrial environment of oldhamite portlandite vaterite calcite. The mineral bassanite is clearly also a terrestrial weathering product but its precise mode of origïn is somewhat uncertain: in the system CaSO4-H2O, bassanite forms from gypsum at about 100 °C (an unlikely high T for the weathering environment of Norton County).  相似文献   

6.
Abstract— Solid metal/liquid metal partition coefficients for Ag and Pd were determined experimentally as a function of the S concentration of the metallic liquid. Silver is incompatible in solid metal and strongly sensitive to the S content of the metallic liquid; partition coefficients for Ag decrease more than an order of magnitude with increasing S content of the metallic liquid and can be expressed as: where k(Ag) is the molar solid metal/liquid metal partition coefficient and XS is the molar S content of the metallic liquid. The partition coefficient of Pd is less variable but changes from modestly incompatible to modestly compatible in solid metal with increasing S content of the metallic liquid: With these new partition coefficients for Pd and a fractional crystallization model, Pd abundance trends recorded in iron meteorite groups are modeled successfully. Measured Ag distribution between troilite-rich nodules and adjacent metal in iron meteorites also agree well with experimental solid metal/liquid metal equilibrium values. However, observed Pd metal/nodule distributions do not agree with experimentally determined partition coefficients, which suggests a more complex history than simple solid metal/liquid metal equilibrium.  相似文献   

7.
By using a nonlinear model of an axisymmetric – dynamo, an analytical expression which gives the magnitude of the mean magnetic field as a function of rotation and other parameters for a solar-type convective zone is obtained. The mean magnetic field varies as the power of the rotation rate. The resulting theoretical relationship of the X-ray luminosity as a function of the angular velocity is in agreement with observations by Fleming, Gioia, and Maccacaro (1989).  相似文献   

8.
In this interview, John Wasson (Fig.  1 ) describes his childhood and undergraduate years in Arkansas and his desire to pursue nuclear chemistry as a graduate student at MIT. Upon graduation, John spent time in Munich (Technische Hochschule), the Air Force Labs in Cambridge, MA, and a sabbatical at the University of Bern where he developed his interests in meteorites. Upon obtaining his faculty position at UCLA, John established a neutron activation laboratory and began a long series of projects on the bulk compositions of iron meteorites and chondrites. He developed the chemical classification scheme for iron meteorites, gathered a huge set of iron meteorite compositional data with resultant insights into their formation, and documented the refractory and moderately volatile element trends that characterize the chondrites and chondrules. He also spent several years studying field relations and compositions of layered tektites from Southeast Asia, proposing an origin by radiant heating from a mega‐Tunguska explosion. Recently, John has explored oxygen isotope patterns in meteorites and their constituents believing the oxygen isotope results to be some of the most important discoveries in cosmochemistry. John also describes the role of postdoctoral colleagues and their important work, his efforts in the reorganization and modernization of the Meteoritical Society, his contributions in reshaping the journal Meteoritics, and how, with UCLA colleagues, he organized two meetings of the society. John Wasson earned the Leonard Medal of the Meteoritical Society in 1992 and the J. Lawrence Smith Medal of the National Academy in 2003.
Figure 1 Open in figure viewer PowerPoint John T. Wasson.
  • DS
  • John, thank you for letting me document your oral history. Let us start with my normal opening question, how did you get interested in meteorites?
  • JW
  • My Ph.D. research was in nuclear chemistry at MIT. Until late in my studies I thought I could be a nuclear chemist using the classical scientific method. That is, you gather data on a topic that seems interesting, you look for patterns in the data, and you write an interpretative paper that explains the data. I had learned, though, by going to Gordon Conferences, that this was not the way nuclear chemistry was being done. Nuclear chemists measured gamma ray energies as accurately as they could, they tried to fit these into energy levels diagrams, and then the nuclear physicists took over and interpreted the data. The nuclear physicists looked for the patterns in the energy‐level diagrams and made the models. That was not what I had in mind. But while I was at MIT, I heard lectures by Harold Urey, Hans Suess, and James Arnold. These were people whose backgrounds were not that different from mine and all three extolled the virtues of working on meteorites, and how you could learn neat things about how the solar system worked. That's a strength of MIT, exposure to neat ideas, and I credit the institution for doing this. So that was it. I was hooked.
  • DS
  • You have talked to us about how you became interested in meteorites, let's go back and talk about your precollege years.
  •   相似文献   

    9.
    10.
    Using the 3-dimensional ASH code, we have studied numerically the instabilities that occur in stellar radiation zones in presence of large-scale magnetic fields, rotation and large-scale shear. We confirm that some configurations are linearly unstable, as predicted by Tayler and collaborators, and we determine the saturation level of the instability. We find that rotation modifies the peak of the most unstable wave number of the poloidal instability but not its growth rate as much as in the case of the m = 1 toroidal instability for which it is changed to σ = /Ω. Further in the case with rotation and shear, we found no sign of the dynamo mechanism suggested recently by Spruit even though we possess the essential ingredients (Tayler's m = 1 instability and a large scale shear) supposedly at work. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

    11.
    Galloway, Proctor, and Weiss have shown by numerical experiment that the magnetic field extending across a convective cell in a highly conducting viscous fluid may be concentrated into sheets with energy density B 2/8 larger than the kinetic energy density 1/2v 2 of the convection by a factor (v/)1/2 or more. This paper employs conventional boundary layer theory for high Reynolds number to provide a simple analytical example illustrating this remarkable effect of field concentration.This work was supported by the National Aeronautics and Space Administration under grant NGL 14-001-001.  相似文献   

    12.
    We formulate the canonical equations of motion for particles with an (post-HEWTON ian) interaction potential and the HAMILTON ian form of our MACH ian dynamics without inertia.  相似文献   

    13.
    In this interview, William Hartmann (Bill, Fig.  1 ) describes how he was inspired as a teenager by a map of the Moon in an encyclopedia and by the paintings by Chesley Bonestell. Through the amateur journal “Strolling Astronomer,” he shared his interests with other teenagers who became lifelong colleagues. At college, he participated in Project Moonwatch, observing early artificial satellites. In graduate school, under Gerard Kuiper, Bill discovered Mare Orientale and other large concentric lunar basin structures. In the 1960s and 1970s, he used crater densities to study surface ages and erosive/depositional effects, predicted the approximately 3.6 Gyr ages of the lunar maria before the Apollo samples, discovered the intense pre‐mare lunar bombardment, deduced the youthful Martian volcanism as part of the Mariner 9 team, and proposed (with Don Davis) the giant impact model for lunar origin. In 1972, he helped found (what is now) the Planetary Science Institute. From the late 1970s to early 1990s, Bill worked mostly with Dale Cruikshank and Dave Tholen at Mauna Kea Observatory, helping to break down the Victorian paradigm that separated comets and asteroids, and determining the approximately 4% albedo of comet nuclei. Most recently, Bill has worked with the imaging teams for several additional Mars missions. He has written three college textbooks and, since the 1970s, after painting illustrations for his textbooks, has devoted part of his time to painting, having had several exhibitions. He has also published two novels. Bill Hartmann won the 2010 Barringer Award for impact studies and the first Carl Sagan Award for outreach in 1997.
    Figure 1 Open in figure viewer PowerPoint William K. Hartmann taken 2010 Aug 2 (Photo: Gayle Hartmann).
  • DS
  • Bill thank you very much for doing this. I would like to start with a very general question. What is the one incident in your life above all others that has determined the nature of your career?
  • WKH
  • I would say that what initially stirred my excitement for this topic were the books I stumbled across as a teenager. One event I recall was that my brother, who was 8 years older than I was, had a young person's encyclopedia called the Book of Knowledge. One day I was looking at that book and there was this map of the Moon. Craters, mountains, plains, all sorts of features. That blew me away. The concept that there was this other land, not just a shining thing in the sky, but a geological body, a new geographical place. There was also a book by Willy Ley and Chesley Bonestell, Conquest of Space, which had all these marvelous paintings by Bonestell, visualizing what it was like on other planets. It came out in 1949. I am fond of my copy of that book because my father somehow managed to get Willy Ley, a German expatriate colleague of von Braun's, a writer and popularizer for space, to come to our town and give a talk and autograph my book. Many years later I met Chesley Bonestell and got him to autograph the book. There are not very many copies of that book with the signatures of both authors! The paintings gave me a real desire to want to know what it would be like on other worlds.
  •   相似文献   

    14.
    Carbon and nitrogen data from stepped combustion analysis of eight angrites, seven eucrites, and two diogenites, alongside literature data from a further nine eucrites and two diogenites, have been used to assess carbon and nitrogen incorporation and isotope fractionation processes on the angrite parent body (APB), for comparison with volatile behavior on the HED parent body (4 Vesta). A subset of the angrite data has been reported previously (Abernethy et al. 2013 ). Two separate families of volatile components were observed. They were (1) moderately volatile material (MVM), mostly combusting between ~500 and 750 °C and indistinguishable from terrestrial contamination and (2) refractory material (RM), mainly released above 750 °C and thought to be carbon (as ) and nitrogen (as N2 or ) dissolved within the silicate lattice, fitting with the slightly oxidized (~IW to IW+2) angrite fO2 conditions. Isotopic fractionation trends for carbon and nitrogen within the plutonic and basaltic (quenched) angrites suggest that the behavior of the two volatile elements is loosely coupled, but that the fractionation process differs between the two angrite subgroups. Comparison with results from eucrites and diogenites implies similarities between speciation of carbon and nitrogen on 4 Vesta and the APB, with the latter being more enriched in volatiles than the former.  相似文献   

    15.
    A kinematic -dynamo model of magnetic field generation in a thin convection shell with nonuniform helicity for large dynamo numbers is considered in the framework of Parker's migratory dynamo. The asymptotic solution obtained of equations governing the magnetic field has the form of an anharmonic travelling dynamo wave. This wave propagates over most latitudes of the solar hemisphere from high latitudes to the equator, and the amplitude of the magnetic field first increases and then decreases with propagation. Over the subpolar latitudes, the dynamo wave reverses; there the dynamo wave propagates polewards and decays with latitude. The half-width of the maximum of the magnetic field localisation and the phase velocity of the dynamo wave are calculated. Butterfly diagrams are plotted and analysed and these show that even a simple model may reveal some properties of the solar magnetic fields.  相似文献   

    16.
    The torsional oscillations at the solar surface have been interpreted by Schüssler and Yoshimura as being generated by the Lorentz force associated with the solar dynamo. It has been shown recently that they are also present in the upper half of the solar convection zone (SCZ). With the help of a solar dynamo model of the Babcock–Leighton type studied earlier, the longitudinal component of the Lorentz force, L , is calculated, and its sign or isocontours, are plotted vs. time, t, and polar angle, (the horizontal and vertical axis respectively). Two cases are considered, (1) differential rotation differs from zero only in the tachocline, (2) differential rotation as in (1) in the tachocline, and purely latitudinal and independent of depth in the bulk of the SCZ. In the first case the sign of L is roughly independent of latitude (corresponding to vertical bands in the t, plot), whereas in the second case the bands show a pole–equator slope of the correct sign. The pattern of the bands still differs, however, considerably from that of the helioseismic observations, and the values of the Lorentz force are too small at low latitudes. It is all but certain that the toroidal field that lies at the origin of the large bipolar magnetic regions observed at the surface, must be generated in the tachocline by differential rotation; the regeneration of the corresponding poloidal field, B p has not yet been fully clarified. B p could be regenerated, for example, at the surface (as in Babcock–Leighton models), or slightly above the tachocline, (as in interface dynamos). In the framework of the Babcock-Leighton models, the following scenario is suggested: the dynamo processes that give rise to the large bipolar magnetic regions are only part of the cyclic solar dynamo (to distinguish it from the turbulent dynamo). The toroidal field generated locally by differential rotation must contribute significantly to the torsional oscillations patterns. As this field becomes buoyant, it should give rise, at the surface, to the smaller bipolar magnetic regions as, e.g., to the ephemeral bipolar magnetic regions. These have a weak non-random orientation of magnetic axis, and must therefore also contribute to the source term for the poloidal field. Not only the ephemeral bipolar regions could be generated in the bulk of the SCZ, but many of the smaller bipolar regions as well (at depths that increase with their flux), all contributing to the source term for the poloidal field. In contrast to the butterfly diagram that provides only a very weak test of dynamo theories, the pattern of torsional oscillations has the potential of critically discriminating between different dynamo models.  相似文献   

    17.
    The Machian models of isotropic expanding universes according to the “inertia-free” gravo-dynamics imply the equations between the instantan values H0 and q0 of the HUBBLE parameter H, the acceleration q, and the matter density o. Therefore, in Machian universes with linear expansion q0 = 0 the energy integral E = -1/2ϵc2 is zero and the matter density becomes (with H02R02 = c2/3) (f0 the Newtonian gravitational constant). This is the critical density in general relativistic cosmology.  相似文献   

    18.
    In this paper, we improve the previous work on the MHD Alfvén wave oscillation model for the neutron star (NS) kHz quasi‐periodic oscillations (QPOs), and compare the model with the updated twin kHz QPO data. For the 17 NS X‐ray sources with the simultaneously detected twin kHz QPO frequencies, the stellar mass M and radius R constraints are given by means of the derived parameter A in the model, which is associated with the averaged mass density of the star as 〈ρ 〉 = 3M /(4πR3) ≃ 2.4 × 1014 (A /0.7)2 g/cm3, and we also compare the MR constraints with the stellar equations of state. Moreover, we also discuss the theoretical maximum kHz QPO frequency and maximum twin peak separation, and some expectations on SAX J1808.4–3658 are mentioned, such as its highest kHz QPO frequency ∼ 870 Hz, which is about 1.4–1.5 times less than those of the other known kHz QPO sources. The estimated magnetic fields for both Z sources (about Eddington accretion rate ) and Atoll sources (∼ 1% ) are approximately ∼109 G and ∼108 G, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

    19.
    Core samples from the Chicxulub impact structure provide insights into the formation processes of a shallow-marine-target, complex crater. Although previous studies investigated the impactites (generally suevitic and polymict breccias) of the Yaxcopoil-1 (YAX-1) drill core in the Chicxulub impact structure, the interpretation of its deposition remains controversial. Here, we analyze planar deformation features (PDFs), grain size, and abundance of shocked quartz throughout the YAX-1 impactite sequence (794–895 m in depth). PDF orientations of most quartz grains in YAX-1 impactites show a distribution of both low angles ({104}, {103}, {102}) and high angles (orientations higher than 55° to c-axis), while the lower part of the impactite sequence contains quartz showing only PDF orientations of low angles. High-abundance, coarse-grained shocked quartz is found from the lower to middle parts of the impactites, whereas it abruptly changes to low-abundance, fine-grained shocked quartz within the upper part. In the uppermost part of the impactites, repeated oscillations in contents of these two components are observed. PDF orientation pattern suggests most of the shocked quartz grains experienced a range of shock pressure, except two samples in the lower part of impactites, which experienced only a high level of shock. We suggest that the base and lower part of the impactite sequence were formed by ejecta curtain and melt surge deposits, respectively. Our results are also consistent with the interpretation that the middle part of the impactite sequence is fallback ejecta from the impact plume. Additionally, we support the contention that massive seawater resurges into the crater occurred during the deposition of the upper and uppermost part of the impactites.  相似文献   

    20.
    A number of examples are worked out to illustrate the consequences of reverse flux ejection from the surface of a convective layer of conducting fluid. Generally the reverse flux ejection has the opposite effect of magnetic buoyancy, tending to bury the fields rather than bringing them through the surface. Even a weak flux ejection effect prevents the excape of magnetic field through the surface. Reverse flux ejection at the surface of an -dynamo profoundly alters the character of the solutions of the dynamo equations. Altogether, flux ejection serves to obscure the interpretation of magnetic observations. The outstanding problem now is to determine under what circumstances there exists cyclonic convection with rotations in excess of ±1/2 in the rising columns of fluid. Negative turbulent diffusion is expected to be a close companion of the flux ejection effect.This work was supported by the National Aeronautics and Space Administration under grant NGL 14-001-001.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号