首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The use of dissolved organic matter fluorescence as a tracer of river-sea mixing was examined in two South Carolina estuaries. Fluorescence declined linearly with seawater dilution in laboratory mixing studies, and also behaved conservatively in an estuary where a single river emptied into a bay. Fluorescence-salinity relationships were also studied in another estuary where a piedmont river (high suspended sediment, low fluorescence) and a coastal plains river (low sediment, high fluorescence) mixed with ocean water. The factor of 2 or greater difference in fluorescence between the two rivers allowed their relative contribution to the estuarine water mass to be distinguished. Petroleum hydrocarbons, measured in estuarine water at 0·7-1·8 μg l−1 concentrations, contributed negligibly to water fluorescence.  相似文献   

2.
Isolates of the dinoflagellate Gonyaulax tamarensis were established from benthic cysts or motile cells collected along the north-western Atlantic coast from the Bay of Fundy to Long Island. All clones were grown under the same conditions and assayed in a blind test for toxin content and composition. Differences in toxin content (μmouse unit per cell) spanning two orders of magnitude were found, with decreasing toxicity from north to south. Some isolates had undetectable toxin levels. The low toxicity of southern strains of G. tamarensis may explain the historical absence of paralytic shellfish poisoning (PSP) in areas where cysts and motile cells have been reported. The cause of the observed geographic pattern is unknown, but is does suggest that there may be an environmentally-determined southern limit to the regional PSP problem.Qualitative data on the toxin composition of some clones indicate that saxitoxin, neosaxitoxin and gonyautoxins -II, -III and -IV are generally present. A more quantitative approach (i.e. one which examines each isolate for all of the 12 Gonyaulax toxins) is needed to fully utilize the potential of toxin composition in discriminating between strains.  相似文献   

3.
Baroclinic circulation in highly stratified and partially stratified estuaries is characterised by a two-layer flow: a bottom salt- water inflow and a surface brackish-water outflow. Tidal period variation of the thicknesses of a two-layer flow is observed to be associated with mixing, bottom stress and hydraulic characteristics of superposed tidal and gravity currents. Here, both analytical two-layer hydraulic equations with weak friction and a numerical model including a turbulence closure were utilised to understand the mechanism of the layer tendency within a two-layer flow under different barotropic flow conditions. It has been found that in the weak bottom friction case, a gravity current has two critical solutions at the layer thickness equal to 0·5Hand 0·292H. The layer thickness towards a particular critical solution is dependent on the sign of the bottom stress, i.e. when the bottom stress is opposite (favor) to the bottom gravity current, its layer thickness converges to 0·5H(0·292H). In the case of strong bottom stress and mixing opposing the gravity current, the solutions of the gravity current layer thickness at 0·5Hand 0·292Hwill not be valid. Both mixing and vorticity produced by bottom stress erode the halocline, and produce a high velocity core in the mid-depth, which leads to the thickness of a bottom gravity current greater than 0·5H. These internal hydraulic tendency and mixing processes, varying with time-dependent barotropic tidal current forcing, determine the tidal period variation of the gravity current structure.  相似文献   

4.
The annual loads of nutrients (TOxN equal to nitrate+nitrite; ammonium, phosphate, silicate) to all the estuaries on the mainland of the United Kingdom were estimated from data on water flow through gauging stations at the tidal limits of estuaries, and from concentration measurements under the Harmonised Monitoring Scheme of nutrient concentrations in water samples from these stations. The annual loads of nutrients showed distinct regional variations, with estuaries along the west coast of Wales and northern Scotland having much smaller loads than those along the east coast of England. The largest nitrogen loads were of TOxN, and ammonium loads were usually small in comparison. The Severn, Mersey, Humber and Thames had the highest loads, although these were small in relation to the larger continental European estuaries. Loads of TOxN per unit of catchment area were surprisingly constant (about 105 moles N km−2 y−1). The nutrient loads showed that most U.K. catchments were influenced by human activity, the majority being in the ‘ moderately influenced ’ category. Nutrient loads were also normalized for the area of each estuary, as a measure of the relative influence of nutrients on the receiving estuaries. The ratios of N:P, N:Si and P:Si in the annual loads suggested that most estuaries were likely to be, if anything, P limited rather than N or Si limited. However, crude annual loads may conceal significant seasonal variations.The spring maximum chlorophylla concentrations in coastal waters adjacent to each estuary were significantly correlated with the log total annual loads of TOxN, ammonium and phosphate (but not silicate) for each estuary, providing a direct link between a measure of the degree of biological response in coastal waters and the nutrient load through the estuaries. There were no significant correlations between spring maximum chlorophyll a concentrations and either catchment-normalized or estuary-normalized nutrient loads. There was significant correlation between catchment area-normalized loads of phosphate and an urbanization index for the catchments, but not with the catchment area-normalized loads of the other nutrients.  相似文献   

5.
6.
The generation of tidal asymmetries is clarified via numerical integration of the one-dimensional equations for channel geometries characteristic of shallow estuaries. Channels without tidal flats develop a time asymmetry characterized by a longer falling than rising tide. This behavior is enhanced by strong friction and large channel cross-sectional area variability over a tidal cycle. Resulting tidal currents have a shorter, intense flood and a longer, weak ebb (flood-dominant). Addition of tidal flats to the channels can produce a longer rising tide and stronger ebb currents (ebb-dominant), if the area of tidal flats is large enough to overcome the effects of time-variable channel geometry. Weaker friction with flats can also produce this asymmetry.Despite the physical complexity of these systems, essential features of estuarine tidal response can be recovered from one-dimensional models. Shallow estuaries are shown to have a system response leading to stable, uniform senses of tidal asymmetry (either flood- or ebb-dominated, due to phase-locking of forced tidal constituents), with down-channel development in magnitude of asymmetry. These concepts are illustrated by modeling idealized representations of tidal channels at Nauset Inlet, MA, and Wachapreague Inlet, VA, which have flood- and ebb-dominance, respectively.  相似文献   

7.
Data collected in 1953 and 1954 by the U.S. Fish and Wildlife Service were statistically analyzed to ascertain where and when fish eggs and larvae are most abundant on the southeastern U.S. continental shelf. The results are related to some oceanographic processes that might affect the survival of larval fish. Along-shelf differences in numbers of eggs and larvae are minimal compared with differences that occur across the shelf. Highest numbers of fish larvae are found on the outer shelf during fall, winter and spring, but larvae are evenly distributed across the shelf in summer.Upwelling strongly influences the dynamics of plankton production on the outer shelf, and thus during most seasons of the year upwelling may be the most important process controlling the amount of food available to larval fish. During winter and spring, mean winds do not favor shoreward transport of larval fish from the outer shelf if the larvae are located in near-surface waters. Thus, during these seasons variability of winds on the ‘event’ time scale may be more important to onshore and offshore transport of larval fish than the mean strength and direction of monthly or seasonally averaged winds.  相似文献   

8.
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号