首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
The mid-Cenomanian Dunvegan Formation represents a delta complex deposited on a foreland basin ramp over about 2 my. The Dunvegan is divided into 10 transgressive–regressive allomembers, labelled J–A in ascending order, each defined by regional marine transgressive surfaces. Parasequences within allomembers show an aggradational to offlapping stacking pattern that reflects alternate generation and removal of accommodation. The upper surfaces of allomembers H–E are incised by extensive valley systems traceable for up to 320 km and over about 50 000 km2. Valley depths range up to 41 m and can change significantly over short distances. However, the average depth of incision (mean 21 m) shows no systematic variation in longitudinal profiles and no evidence of headward shallowing. Valleys are typically 1–2 km wide, but locally widen to about 8 km. Widening is sometimes associated with confluence zones, but elsewhere it is not. Updip reaches of valleys are dominated by cross-bedded fluvial sandstone forming multistorey point-bar deposits. Sandstones contain widespread but uncommon paired carbonaceous drapes recognizable as tidal bundles. Inclined heterolithic stratification is locally well developed at the top of the valley fill. Downdip reaches of valleys, typically within 50 km of the lowstand shoreline, have a sandstone-dominated lower part and, locally, a mud-rich upper portion consisting of a variety of laminated heterolithic facies with a clear tidal signature. These heterolithic deposits may represent central basin, tidal flat, bayhead delta and point-bar environments. Valley filling took place mainly during the transgressive systems tract (TST) when tidally influenced environments migrated upvalley. Semi-diurnal tidal backwater effects extended at least 30 km landward of the regional maximum transgressive marine shoreline. The aggradational late TST and highstand systems tract (HST) includes deltaic and coastal plain deposits comprising lake and anastomosed river deposits that suggest a very low gradient (≈ 1:3000). Delta parasequences of the falling stage systems tract (FSST) offlap seaward and have no equivalent coastal plain deposits. The FSST has an average width of 60 km and an inferred gradient of 1:2500. The upper surfaces of the HST and FSST are extensively incised by valleys. The lowstand systems tract (LST) is subtly aggradational, lacks valleys and is characterized by large delta lobes fed by major distributaries. The width and inferred slope of the FSST, coupled with the thickness of aggradational TST and HST deposits on the coastal plain, suggest a vertical accommodation of about 35 m per transgressive event. About 11 m of this is attributed to isostatic subsidence resulting from water and sediment loads; the residual 24 m is attributed to eustatic rise. This sea-level change is of the same order of magnitude as the valley depths. The length of valleys, however, does not seem to be explicable solely in terms of downstream forcing by sea-level change, and an additional, upstream-forcing mechanism, possibly related to precipitation cycles in the Milankovitch band, might be inferred.  相似文献   

2.
High resolution stratigraphical analysis divides a rock succession into the basic genetic units of stratigraphy which are here termed small scale stratigraphical cycles. Each cycle records the sedimentological response to an episode of shallowing and deepening. Assuming that these changes in water depth reflect changes in the shoreline position, they can be considered as regressive/transgressive episodes. Each cycle comprises a regressive and transgressive facies tract which will be variably proportioned; in some examples a facies tract may only be represented by a hiatal surface of no deposition, erosion and/or bypass. In the Annot Sandstones of south-east France, variations in facies types, proportions and associations can be demonstrated both laterally and vertically through the succession. First, it is demonstrated that facies variations occur within regressive or transgressive facies tracts as a function of the stratigraphical stacking pattern of the cycles (i.e. landward, vertical or seaward stacked); this is termed ‘vertical facies differentiation’. Second, the proportions of facies tracts and their constituent facies types within an individual cycle vary between more landward and more seaward palaeogeographical locations; this is termed ‘lateral facies differentiation'. The upper Eocene/lower Oligocene Annot sandstones outcrop in the Maritime Alps of south-east France, within the thin skinned outer fold and thrust belt of the Alpine arc. The sandstones are well exposed in the area of the Col de la Cayolle on the north-west margin of the Argentera Massif, where lithostratigraphical correlations are possible over 3·5 km in a NNW/SSE direction, perpendicular to the edge of the depositional basin. Traditionally, these outcrops have been interpreted as deep marine turbidite lobe sediments; this study reflects a significant reinterpretation of this succession as having been deposited in a shallow marine environment. Seven sedimentary sections were measured through the succession, which is divided into 10 small scale stratigraphical cycles. These cycles are described in terms of eight facies which are separated into their transgressive or regressive facies tracts. In eight of the 10 cycles, the regressive facies tracts reflect the progradation of storm influenced braid deltas over shelf muds and silts. In two of the 10 cycles, the regressive facies tracts reflect barrier inlet and wash-over sands interfingering with back barrier deposits. These latter two cycles are located within landward stepping cycle sets; this is an example of vertical facies differentiation. Transgressive facies tracts locally reworked the upper surface of the regressive facies tract and also comprise barrier and back barrier deposits. The facies succession within each cycle varies according to its position with respect to the palaeoshoreline. The more landward portion of an individual cycle comprises a deltaic shoaling upward succession, culminating in coarse distributary channel conglomerates, overlain by a transgressive barrier/inlet system with extensive back barrier deposits. Beyond the delta front, the more seaward equivalent of individual cycles comprises an erosive base, with aggradational massive pebbly sandstones sitting directly upon offshore heterolithics; these sandstones are interpreted as hyperconcentrated fluvial efflux into the nearshore environment. This grades upward into offshore heterolithics and graded storm deposits representing the products of ravinement, which are then overlain by shelf mudstones. In summary, the more landward portions of cycles preserve predominantly regressive facies tracts, whereas the more seaward portions preserve aggradational to retrogradational strata of the transgressive facies tract; this is an example of lateral facies differentiation.  相似文献   

3.
High resolution seismic lines from the inner and mid-shelf of the Durban Bight reveal an unprecedented view of the seismic stratigraphy of the central KwaZulu-Natal uppermost continental margin. Seven units are recognised from the shelf on the basis of their stratal architecture and bounding unconformities. These comprise four incompletely preserved sequences consisting of deposits of the highstand systems tract (Unit B), falling stage systems tracts (Unit C), the transgressive systems tract (Units A, D and G) and lowstand systems tracts (early fill of the incised valleys and strike diachronous prograding reflectors of Unit A). Seismic facies recognised as incised valley fills correspond to the lowstand and transgressive systems tracts. When integrated with published accounts of onshore and offshore lithostratigraphy and local sea level curves, we recognise an Early Santonian transgression (Unit A to Unit B), superimposed by uplift-induced pulses of forced regression. A Late Campanian relative sea level fall (Unit C) followed. Sediments of the Tertiary period are not evident on the Durban Bight shelf except for isolated incised valley fills of Unit D lying within incised valleys of Late Pliocene age. Overlying these are two stages of Pleistocene shoreline deposits of indeterminate age. Erosion concurrent with relative sea level fall towards the last glacial maximum shoreline carved a third set of incised valleys within which sediments of the Late Pleistocene/Holocene have infilled.  相似文献   

4.
层序地层中的混合沉积作用及其控制因素   总被引:10,自引:0,他引:10  
简要介绍了硅质碎屑与碳酸盐混合沉积有关概念及混合沉积作用类型,分析了层序体系域中的混合沉积作用及其控制因素。总结认为,硅质碎屑与碳酸盐的混合沉积作用不仅发生在低水位体系域(LST),而且其它各体系域中也都有不同程度的混合沉积现象,但混合沉积作用方式有差别:LST主要为源区混合,陆棚边缘体系域(SMT)和高水位体系域(HST)晚期以间断混合及相混合占优,海浸体系域(TST)早期以间断混合为主。综合研究显示,准层序一级的海平面变化型式差异可能是导致层序体系域混合沉积作用的主要因素,其中,LST、SMT、晚期HST的混合沉积作用分别与准层序一级海平面变化的幅度、速率、位置和持续时间有关,TST则受控于物源供给;先期地形、气候变化(含碳酸盐生产速率影响)或多或少对体系域的混合沉积作用有影响。此外,某些情况下层序体系域的混合沉积作用可能会受到局部构造活动影响,而层序组或超层序内层序体系域的混合沉积作用强弱及其旋回性变化可以提供脉动性区域构造活动信息。  相似文献   

5.
西藏北喜马拉雅地层分区石炭纪仅发育杜内期一维宪期沉积,时间跨度约30Ma,含亚里组与纳兴组两个岩石地层单位。据吉隆沟地层的特征可识别出潮坪、三角洲及浅海陆棚等沉积相。由层序界面性质与地层结构特征划分为2个Ⅰ型层序、7个Ⅱ型层序、2个层序组,属1个超层序。多数层序仅由海侵体系域(TST)和高水位体系域(HST)两部分组成。  相似文献   

6.
Environmental settings on the Ionian coastal plain and inner shelf seaward of Locri‐Epizephiri in Calabria, Italy, differed markedly before, during, and following settlement by the Greeks. Sediment core analyses and geophysical surveys in this study support recent archaeological findings and the hypothesis that the margin may once have served as a harbor and/or shipyard. The subsurface Holocene stratigraphy records that (1) the shoreline advanced to a maximum landward position before Greek settlement, then regressed offshore to what is now the inner shelf before once again migrating landward. These marked coastal shifts were triggered primarily by land uplift and probable subsidence offshore along this structurally active Calabrian Arc segment. Associated with this are: (2) a sediment fining‐upward sequence in Greek–Roman time that indicates only partial protection of the coastal area, and (3) possible presence of subsurface structures seaward of the city wall in a sector now positioned ∼200 m offshore. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
渤海是一个仅通过渤海海峡与北黄海相接的半封闭陆架浅海,晚第四纪以来的地层演化过程复杂,目前尚不清楚,且海相地层的形成时代存在争议.为了研究渤海西部晚第四纪以来的地层层序,对高分辨率浅地层剖面声学地层与典型钻孔沉积地层的进行对比分析.研究表明:高分辨率浅地层剖面自下而上划定的7个声学地层单元(U5、U4-2、U4-1、U3、U2、U1-2、U1-1)与钻孔岩心划分的沉积地层单元具有良好的对应关系.与MIS4期、MIS2期低海面时期的沉积间断密切相关的两个层序界面R5、R3,将渤海西部晚第四纪(MIS5期)以来的地层层序自下而上划分为3个层序(SQ3、SQ2、SQ1):SQ3识别出下部海侵体系域与高水位体系域、上部海退体系域,分别对应MIS5期海平面相对较高时期的滨-浅海相交替沉积(U5)、MIS4期早期滨海相沉积(U4-2);SQ2自下而上由低水位体系域[MIS4期中晚期与黄河、滦河相关的河湖相沉积(U4-1)]与海侵体系域[MIS3期早中期滨海相沉积(U3)]组成;SQ1自下而上包括低水位体系域[末次冰盛期与滦河相关的河湖相沉积(U2)]、海侵体系域[全新世早中期滨海相沉积(U1-2)]高水位体系域[全新世高海面以来的浅海相沉积(U1-1)].研究区的地层发育受控于海平面变化、沉积物供应、渤海海峡地形及活动构造的共同作用.   相似文献   

8.
在论述马家沟组三级层序地层成因的基础上,重新厘定了鄂尔多斯盆地马家沟组层序地层格架。马家沟组马一段至马五段划分为4个三级层序,除了Sq1为Ⅰ型层序之外,Sq2、Sq3、Sq4都是Ⅱ型层序。在陆架内Sq1和Sq4由TST和HST构成;Sq2、Sq3由TST、HST和ISLST构成。TST以正常盐度浅海中形成的生物灰岩和泥晶灰岩为特征,HST以准同生期近地表的略为咸化海水成因的泥晶—细粉晶白云岩为特征,陆架内低水位体系域(ISLST)由陆架内盐湖形成的巨厚的蒸发岩系构成。ISLST和HST在空间分布上和成因上是密切相关的,ISLST置于Ⅱ型层序的顶部或者近顶部比较合理。传统的层序地层学将层序界面置于高水位体系域与低水位体系域之间,在此建议将层序界面置于低水位体系域与海侵体系域之间的海侵面。编制了层序3的海侵体系域、高水位体系域、低水位体系域全盆地层序古地理略图。  相似文献   

9.
The Lower Tagus Valley in Portugal contains a well-developed valley-fill succession covering the complete Late Pleistocene and Holocene periods. As large-scale stratigraphic and chronologic frameworks of the Lower Tagus Valley are not yet available, this paper describes facies, facies distribution, and sedimentary architecture of the late Quaternary valley fill. Twenty four radiocarbon ages provide a detailed chronological framework. Local factors affected the nature and architecture of the incised valley-fill succession. The valley is confined by pre-Holocene deposits and is connected with a narrow continental shelf. This configuration facilitated deep incision, which prevented large-scale marine flooding and erosion. Consequently a thick lowstand systems tract has been preserved. The unusually thick lowstand systems tract was probably formed in a previously (30,000–20,000 cal BP) incised narrow valley, when relative sea-level fall was maximal. The lowstand deposits were preserved due to subsequent rapid early Holocene relative sea-level rise and transgression, when tidal and marine environments migrated inland (transgressive systems tract). A constant sea level in the middle to late Holocene, and continuous fluvial sediment supply, caused rapid bayhead delta progradation (highstand systems tract). This study shows that the late Quaternary evolution of the Lower Tagus Valley is determined by a narrow continental shelf and deep glacial incision, rapid post-glacial relative sea-level rise, a wave-protected setting, and large fluvial sediment supply.  相似文献   

10.
近海型含煤岩系沉积学及层序地层学研究进展   总被引:3,自引:1,他引:2       下载免费PDF全文
层序地层学是近20年来发展起来的一门新的方法学科,并在聚煤作用分析中得到广泛应用。作者就近海型含煤岩系沉积学研究历史以及煤系层序地层学研究方法及有关问题进行探讨,认为近海环境的聚煤作用实际上是海平面(基准面)上升过程中发生的,同时提出煤层厚度受泥炭堆积速率与可容空间增加速率的控制:靠陆一侧冲积平原和三角洲平原沉积环境中,厚煤层主要出现在最大海泛面位置;而靠海一侧障壁-潟湖或碳酸盐岩台地沉积环境中,厚煤层主要出现在初始海泛面的位置;但就整个三级复合层序来说,层序中厚度最大、分布最广的煤层主要分布于可容空间增加速率最大的最大海泛面附近的位置。对于中国晚古生代近海型煤系中常见的“根土岩-煤-石灰岩”序列,聚煤作用发生于海相石灰岩“滞后时段”,即在海侵之后、海相石灰岩层真正沉积下来之前的时段,这一时段可容空间增加速率与泥炭堆积速率平衡,有利于聚煤作用发生。  相似文献   

11.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

12.
Richly fossiliferous and disconformity-bounded facies successions, termed Mid-Cycle Condensed Shellbeds (MCS), occupy a mid-cycle position within depositional sequences in the Castlecliff section (mid-Pleistocene, Wanganui Basin, New Zealand). These shell-rich intervals (0.1–4.5 m thick) comprise the upper of two loci of shell accumulation in Castlecliff sequences. The lower disconformable contacts are sharp and variably burrowed, and are interpreted as submarine transgressive surfaces formed by storm or tidal current erosion at the feather-edge of contemporary transgressive systems tracts. Above (i.e. seaward) of this erosion surface, macrofossil remains (mainly bivalves and gastropods) accumulated, with little reworking, on the inner-shelf under conditions of reduced terrigenous sediment supply. The upper contacts are sharp transitions from shell-rich to relatively shell-poor lithofacies; parautochthonous shell accumulation was ‘quenched’by downlapping highstand systems tract shelf siltstones and muddy fine sandstones. Castlecliff MCS, together with the basal shell-rich part of overlying highstand systems tracts, occupy a stratigraphic position which corresponds to the condensed section that forms at the transgressive/highstand systems tract boundary in the sequence model of Haq et al. (1987). Palaeoenvironmental analysis indicates that Castlecliff MCS are substantially, if not entirely, transgressive deposits. This study therefore shows that the ‘condensation maximum’within a depositional sequence does not necessarily bracket the transgressive systems tract/highstand systems tract boundary.  相似文献   

13.
Three lines of evidence based on data from more than 400 boreholes and vibrocores have been used to reconstruct the evolution of the barrier islands during the Holocene transgression in southern Long Island, New York: (1) the Holocene transgressive stratigraphic sequence behind the present barriers, (2) the stratigraphic patterns of the inner shelf, and (3) the morphology of the now-buried late Pleistocene coastal features. The extensive preservation of backbarrier sediments, radiocarbon dated between 7000 and 8000 yr BP, on the inner shelf of southern Long Island suggests that the barriers have not retreated by continuous shoreface erosion alone, but have also undergone discontinuous retreat by in-place ‘drowning’ of barriers and stepwise retreat of the surf zone. Such stepwise retreat of the surf zone has prevented the backbarrier sediments from being reworked. Based on the presence of submerged barrier sand bodies in seismic records, it is inferred that about 9000 years ago, when the sea stood about 24 m below the present sea level, a chain of barriers developed on the present shelf about 7 km offshore of the present barriers. With continued sea-level rise, the – 24 m barrier built upward until the sea reached about – 15 m MSL, just prior to 7000 yr BP. The barriers were then submerged by the rapidly rising sea, and the surf zone shifted rapidly landward to a position about 2 km from the present shoreline. The surf zone overstepped to the landward margin of the old lagoon, which had become fixed at the steep seaward face of mid-Wisconsinan (?) or Sangamonian coastal barriers. During the past 5000 or 6000 years, the shoreface has retreated continuously by about 2 km. Evidence from southern Long Island and elsewhere in regions of coastal submergence indicates that rapid sea-level rise and low sand supply seem to favour the stepwise retreat of barriers, whereas slow rates of submergence and a greater supply of sand generally favour continuous shoreface retreat. Stationary upbuilding, or seaward progradation of barriers may occur when supply of sand is great, and/or submergence is slowed or reversed. Morphologic highs on the pretransgression surface (such as old barrier ridges) tend to fix the migrating barrier shoreline during either continuous retreat, or stepwise retreat of barriers.  相似文献   

14.
近年来随着层序地层学研究逐步走向定量化,将其标准化已成为沉积学界的共识。可容纳空间作为层序标准化中重要的参数之一,受到越来越多的关注。然而,不同可容纳空间背景下汇水盆地的坡度和沉积供给量均存在差异,其复杂的沉积过程造成当前研究难以准确刻画出对应层序参数演化与三角洲形态之间的耦合关系。本次研究选取中国2个典型的湖泊—三角洲进行对比研究,包括较为平缓的鄱阳湖赣江三角洲(地层倾角小于1°)与坡度相对较大的岱海湖周缘三角洲(地层倾角3°~10°)。通过对近30年不同水位期卫星照片解译,并将其与现代沉积剖面解释相结合,明确了: (1)可容纳空间快速增加背景下,湖岸线变化相对稳定,但平面影响范围较小; 三角洲在低位域(LST)时期主要发育帚状或朵状前积体,在湖侵域(TST)和高位域(HST)时期主要表现为朵叶状或鸟足状前积体。(2)缓坡低可容纳空间背景下,湖岸线变化较为剧烈,并且影响范围较大; 三角洲在低位进积域(RST)时期多以鸟足状前积体为主,内部发育指状沙坝,高位域(HST)时期表现为鸟足状前积体,同时沿岸沙坝较为发育。综合上述认识,结合沉积正演模拟结果,在经典层序和滨岸坡折岸线迁移模式的基础上,分别针对可容纳空间快速增加背景和低可容纳空间背景,建立了对应的层序—三角洲发育模式,并从长短周期尺度分析了不同可容纳空间背景下层序—沉积演化过程的控制因素。  相似文献   

15.
Upper Carboniferous to Lower Permian sedimentary rocks extend along the periphery of the northern Sydney Basin, a sub‐basin of the Sydney‐Gunnedah‐Bowen Basin complex. The basin contains basal basalts and volcanic sediments deposited in a nascent rift zone. This rift zone was created through crustal thinning during trench rollback on the eastern edge of the New England Orogen. Thermal subsidence created accommodation for predominantly marine Dalwood Group sediments. Clastic sedimentation then occurred in the Maitland‐Cessnock‐Greta Coalfield and Cranky Corner Basin during the Early Permian. This occurred on a broad shelf undergoing renewed thermal subsidence on the margin of a rift flank of the Tamworth Belt of the southern New England Orogen. Braidplain fans prograded or aggraded in two depositional sequences. The first sequence commences near the top of the Farley Formation and includes part of the Greta Coal Measures, while the second sequence includes the majority of the Greta Coal Measures and basal Branxton Formation. Thin, areally restricted mires formed during interludes in a high sedimentation regime in the lowstand systems tracts. As base‐level rose, areally extensive mires developed on the transgressive surface of both sequences. A paludal to estuarine facies changed to a shallow‐marine facies as the braidplain was transgressed. The transgressive systems tracts continued to develop with rising relative sea‐level. Renewed uplift in the hinterland resulted in the erosion of part of the transgressive systems tract and all of the highstand systems tract of the lower sequence. In the upper sequence a reduction in relative sea‐level rise saw the development of a deltaic to nearshore shelf highstand systems tract. Extensional dynamics caused a fall in relative base‐level and the development of a sequence boundary in the Branxton Formation. Finally, renewed thermal subsidence created accommodation for the overlying, predominantly marine Maitland Group.  相似文献   

16.
Amorosi  Colalongo  Pasini  & Preti 《Sedimentology》1999,46(1):99-121
Data from 17 continuously cored boreholes, 40–170 m deep, reveal the subsurface stratigraphy of the Romagna coastal plain. Sedimentological and microfaunal data allow the distinction of eight facies associations of Late Pleistocene–Holocene age, including 18 lithofacies and 16 faunal associations. Ten 14C dates provide the basis to establish a sequence stratigraphic framework for the succession corresponding to the upper part 35 ky BP of the last glacio-eustatic cycle. The eight facies associations can be grouped into lowstand, transgressive and highstand systems tracts. The upper part of the lowstand systems tract consists of alluvial plain deposits. These accumulated during the Late Pleistocene when the shoreline was ≈250 km south of its present-day position. A pronounced stratigraphic hiatus (between 25 and 8·8 ky BP) is invariably recorded at the upper boundary (transgressive surface) of these Pleistocene, indurated and locally pedogenized alluvial deposits. The succeeding postglacial history is represented by a well developed transgressive–regressive cycle. Transgressive deposits, interpreted to reflect the rapid landward migration of a barrier–lagoon system, include two wedge-shaped, paralic and marine units. These thicken in opposite directions and are separated by a ravinement surface. Above the transgressive deposits, the maximum flooding surface (MFS) marks the change from a transgressive barrier–lagoon complex to a prograding, wave-dominated delta system (early Po delta). The MFS can be traced landwards, where it constitutes the base of lagoonal deposits. An aggradational to progradational stacking pattern of upper delta plain (marsh), lower delta plain (lagoon/bay), and delta front (beach ridge) deposits reflects the progressive increase in the sediment supply/accommodation ratio during the following highstand. The alluvial deposits capping the sequence accumulated by the 13th century AD, in response to an avulsion event that caused abandonment of the former Po delta lobe and the northward migration of the Po River towards its present position.  相似文献   

17.
Thick bay‐fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground‐penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes – notably a reduction in wave energy in response to coastal embayment infilling – in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4 m highstand at ca 5·8 ka, the 75 km2 Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi‐enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive–regressive sequence, and backed by a highstand barrier‐island. The strandplain is immediately underlain by 5 to 16 m of seaward‐thickening, fluvially derived, Holocene‐age, basin‐fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand‐dominated to mud‐dominated; (ii) beachface slopes decrease from >11° to ca 7°; and (iii) progradation rates increase from 0·4 to 1·8 m yr?1. Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea‐level fall and sediment infilling and a decrease in onshore wave‐energy transport from 18 to 4 kW m?1. The combination of allogenic (sediment supply, falling relative sea‐level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.  相似文献   

18.
Analysis of 92 engineering core logs located in the Balize sector of the eastern Mississippi delta focuses on the late Wisconsin unconformity and lithofacies of strata lying immediately below and above this stratigraphic horizon. This major sequence boundary is a key feature used to correlate strata across shelf and slope to the basin. Observations emphasize lithofacies distributions of the latest Pleistocene sediments underlying the unconformity, the late Pleistocene to early Holocene transgressive facies, and the immediately overlying deltaic deposits. Maps and a cross-section compiled with this information highlight the critical relation between lithofacies distributions and late Wisconsin sea-level oscillations. Core analysis reveals that the transgressive facies comprises distinct environments of deposition, offshore to onshore. Findings identify criteria to determine the approximate position of the shoreline at the late Wisconsin maximum sea-level lowstand and at the extent of early Holocene maximum marine inundation in the Balize complex. Mapping of lithologies along the late Wisconsin unconformity serves to improve correlation of sediment facies with changes in acoustic response along high-resolution seismic profiles. An estimate of long-term averaged land subsidence suggests lowering of at least 1 mm/year near the shelfedge during the past 18 000 years. This mapping also refines sea-level response models for the Mississippi delta, including criteria to locate key paleogeographic features such as shelfedges and maximum flooding surfaces in other Recent marine deltas and in older, stacked deltaic sequences.  相似文献   

19.
Micro-organisms producing microbially induced sedimentary structures, particularly epibenthic cyanobacteria, are not facies-dependent and could flourish in any environment if appropriate ecological conditions were provided. Hence, the changes in environmental parameters are the controlling factors on ecological tolerance of the producers. This study on the lower Cambrian successions of the Lalun Formation in Central Iran shows that paralic environments reacted differently to changes in parameters such as river and tide energy, palaeo-topography, the rate of sediment supply and fluctuations in sea-level, even though all were characterized by sandy substrates suitable for the development of microbially induced sedimentary structures. Therefore, the abundance and preservation of microbially induced sedimentary structures varied in the different paralic environments. From a sequence stratigraphic viewpoint, this study demonstrates that erosional discontinuities lacked the conditions required for the substrate stabilization by microbial communities. The distribution, size and type of microbially induced sedimentary structures within high frequency cycles generally follow the trends of changes in vertical facies stacking patterns. Within systems tracts, the pattern, morphological diversity and size of microbially induced sedimentary structures are not dependent on the type of systems tract, but on the type of depositional system developed such as delta, incised valley, coastal plain, estuaries and shoreline to shelf systems. Generally, estuarine and peritidal carbonates record an increase in the development of mat colonization during the transgressive systems tract, owing to decreased sedimentation rate as well as extended shallow water habitats. In contrast, the existence of microbially induced sedimentary structures depends on the pattern of shoreline shift in depositional systems developed during the highstand systems tract, such as open coast tidal flat and delta environments. If a shoreline regression was continuous (depositional trend and stacking pattern are a set of high frequency cycles), a greater increase in the aggradational component than the progradational component would cause intensified destructive processes hindering the development of microbial communities.  相似文献   

20.
《Sedimentary Geology》2006,183(1-2):1-13
Integrated sedimentological and micropaleontological (foraminifers and ostracods) analyses of two 55 m long borehole cores (S3 and S4) drilled in the subsurface of Lesina lagoon (Gargano promontory—Italy) has yielded a facies distribution characteristic of alluvial, coastal and shallow-marine sediments. Stratigraphic correlation between the two cores, based on strong similarity in facies distribution and AMS radiocarbon dates, indicates a Late Pleistocene to Holocene age of the sedimentary succession.Two main depositional sequences were deposited during the last 60-ky. These sequences display poor preservation of lowstand deposits and record two major transgressive pulses and subsequent sea-level highstands. The older sequence, unconformably overlying a pedogenized alluvial unit, consists of paralic and marine units (dated by AMS radiocarbon at about 45–50,000 years BP) that represent the landward migration of a barrier-lagoon system. These units are separated by a ravinement surface (RS1). Above these tansgressive deposits, highstand deposition is characterised by progradation of the coastal sediments.The younger sequence, overlying an unconformity of tectonic origin, is a 10 m-thick sedimentary body, consisting of fluvial channel sediments overlain by transgressive–regressive deposits of Holocene age. A ravinement surface (RS2), truncating the transgressive (lagoonal and back-barrier) deposits in core S4, indicates shoreface retreat and landward migration of the barrier/lagoon system. The overlying beach, lagoon and alluvial deposits are the result of mid-Holocene highstand sedimentation and coastal progradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号