首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particulate matter in aquatic systems is an important vehicle for the transport of particulate organic carbon (POC). Its accurate measurement is of central importance for the understanding of marine carbon cycling. Previous work has shown that GF/F-filter-based bottle-sample-derived concentration estimates of POC are generally close to or higher than large-volume in-situ-pump-derived values (and in some rare cases in subzero waters are up to two orders of magnitude higher). To further investigate this phenomenon, water samples from the surface and mid-water Northeast Atlantic and the Baltic Sea were analyzed. Our data support a bias of POC concentration estimates caused by adsorption of nitrogen-rich dissolved organic material onto GF/F filters. For surface-ocean samples the mass per unit area of exposed filter and composition of adsorbed material depended on the filtered volume. Amounts of adsorbed OC were enhanced in the surface ocean (typically 0.5 μmol cm− 2 of exposed filter) as compared to the deep ocean (typically 0.2 μmol cm− 2 of exposed filter). These dependencies should be taken into account for future POC methodologies. Bottle/pump differences of samples that were not corrected for adsorption were higher in the deep ocean than in the surface ocean. This discrepancy increased in summer. It is shown that POC concentration estimates that were not corrected for adsorption depend not only on the filtered volume, true POC concentration and mass of adsorbed OC, but also on the filter area. However, in all cases we studied, correction for adsorption was important, but not sufficient, to explain bottle/pump differences. Artificial formation of filterable particles and/or processes leading to filterable material being lost from and/or missed by sample-processing procedures must be considered. It can be deduced that the maximum amounts of POC and particulate organic nitrogen (PON) that can be artificially formed per liter of filtered ocean water are  3–4 μM OC (5–10% of dissolved OC) and  0.2–0.5 μM ON (2–10% of dissolved ON), respectively. The relative sensitivities of bottle and pump procedures, and of surface- and deep-ocean material, to artificial particle formation and the missing/losing of material are evaluated. As present procedures do not exist to correct for all possible biasing effects due to artificial particle formation and/or miss/loss of filterable material, uncertainties of filtration-based estimates of POC concentrations need further testing. The challenge now is to further constrain the magnitude of the biasing effects that add to the adsorption effect to reduce the uncertainties of estimates of POC concentrations, inventories and fluxes in the ocean.  相似文献   

2.
As part of E-Flux III cruise studies in March 2005, we investigated phytoplankton community dynamics in a cyclonic cold-core eddy (Cyclone Opal) in the lee of the Hawaiian Islands. Experimental incubations were conducted under in situ temperature and light conditions on a drift array using a two-treatment dilution technique. Taxon-specific estimates of growth, grazing and production rates were obtained from analyses of incubation results based on phytoplankton pigments, flow cytometry and microscopy. Cyclone Opal was sampled at a biologically and physically mature state, with an 80–100 m doming of isopycnal surfaces in its central region and a deep biomass maximum of large diatoms. Depth-profile experimentation defined three main zones. The upper (mixed) zone (0–40 m), showed little compositional or biomass response to eddy nutrient enrichment, but growth, grazing and production rates were significantly enhanced in this layer relative to the ambient community outside of the eddy. Prochlorococcus spp. dominated the upper mixed layer, accounting for 50–60% of its estimated primary production both inside and outside of Opal. In contrast, the deep zone of 70–90 m showed little evidence of growth rate enhancement and was principally defined by a 100-fold increase of large (>20-μm) diatoms and a shift from Prochlorococcus to diatom dominance (80%) of production. The intermediate layer of 50–60 m marked the transition between the upper and lower extremes but also contained an elevated biomass of physiologically unhealthy diatoms with significantly depressed growth rates and proportionately greater grazing losses relative to diatoms above or below. Microzooplankton grazers consumed 58%, 65% and 55%, respectively, of the production of diatoms, Prochlorococcus and the total phytoplankton community in Cyclone Opal. The substantial grazing impact on diatoms suggests that efficient recycling was the major primary fate of diatom organic production, consistent with the low export fluxes and selective export of biogenic silica, as empty diatom frustules, in Cyclone Opal.  相似文献   

3.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   

4.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

5.
We used a new experimental device called PASS (PArticle Sinking Simulator) during MedFlux to simulate changes in in situ hydrostatic pressure that particles experience sinking from mesopelagic to bathypelagic depths. Particles, largely fecal pellets, were collected at 200 m using a settling velocity NetTrap (SV NetTrap) in Ligurian Sea in April 2006 and incubated in high-pressure bottles (HPBs) of the PASS system under both atmospheric and continuously increasing pressure conditions, simulating the pressure change experienced at a sinking rate of 200 m d−1. Chemical changes over time were evaluated by measuring particulate organic carbon (POC), carbohydrates, transparent exopolymer particles (TEP), amino acids, lipids, and chloropigments, as well as dissolved organic carbon (DOC) and dissolved carbohydrates. Microbial changes were evaluated microscopically, using diamidinophenylindole (DAPI) stain for total cell counts and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) for phylogenetic distinctions. Concentrations (normalized to POC) of particulate chloropigments, carbohydrates and TEP decreased under both sets of incubation conditions, although less under the increasing pressure regime than under atmospheric conditions. By contrast, dissolved carbohydrates (normalized to DOC) were higher after incubation and significantly higher under atmospheric conditions, suggesting they were produced at the expense of the particulate fraction. POC-normalized particulate wax/steryl esters increased only under pressure, suggesting biochemical responses of prokaryotes to the increasing pressure regime. The prokaryotic community initially consisted of 43% Bacteria, 12% Crenarchaea and 11% Euryarchaea. After incubation, Bacteria dominated (90%) the prokaryote community in all cases, with γ-Proteobacteria comprising the greatest fraction, followed by the Cytophaga–Flavobacter cluster and α-Proteobacteria group. Using the PASS system, we obtained chemical and microbial evidence that degradation by prokaryotes associated with fecal pellets sinking through mesopelagic waters is limited by the increasing pressure they experience.  相似文献   

6.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

7.
The trophic structure of zooplankton was investigated in Fram Strait (north western Svalbard) in spring and autumn of 2003. Depth-stratified zooplankton samples were collected at 12 stations on the shelf (200 m), across the shelf-slope (500 m) and over deep water (>750 m), using a Multiple Plankton Sampler equipped with 0.180-mm mesh size nets.Higher zooplankton abundance and estimated biomass were found in the shelf area. Abundance and biomass were two times higher in August, when sea-surface temperature was higher than in May. Herbivores dominated numerically in May, and omnivores in August, suggesting a seasonal sequence of domination by different trophic groups. Cirripedia nauplii and Fritillaria borealis prevailed in spring, whereas copepod nauplii and Calanus finmarchicus were numerically the most important herbivores in autumn. Small copepods, Oithona similis and Triconia borealis, were the most numerous omnivorous species in both seasons, but their abundances increased in autumn. Chaetognatha (mainly Eukrohnia hamata) accounted for the highest abundance and biomass among predatory taxa at all deep-water stations and during both seasons. Regarding vertical distribution, herbivores dominated numerically in the surface layer (0–20 m), and omnivores were concentrated somewhat deeper (20–50 m) during both seasons. Maximum abundance of predators was found in the surface layer (0–20 m) in spring, and generally in the 20–50 m layer in autumn. This paper presents the first comprehensive summary of the zooplankton trophic structure in the Fram Strait area. Our goals are to improve understanding of energy transfer through this ecosystem, and of potential climate-induced changes in Arctic marine food webs.  相似文献   

8.
In the framework of the KEOPS project (KErguelen: compared study of the Ocean and the Plateau in Surface water), we aimed to provide information on the water mass pathways and vertical mixing on the Kerguelen Plateau, Southern Ocean, based on 228Ra profiles. Because 228Ra activities are extremely low in this area (~ 0.1 dpm/100 kg or ~ 2.10− 18 g kg− 1), the filtration of large volumes of seawater was required in order to be able to detect it with minimal uncertainty. This challenging study was an opportunity for us to test and compare methods aimed at removing efficiently radium isotopes from seawater. We used Mn-fiber that retains radium and that allows the measurement of all four radium isotopes (226Ra, 228Ra, 223Ra, 224Ra). First, we used Niskin bottles or the ship's seawater intake to collect large volumes of seawater that were passed onto Mn-fiber in the laboratory. Second, we filled cartridges with Mn-fiber that we placed in tandem on in situ pumps. Finally, we fixed nylon nets filled with Mn-fiber on the frame of in situ pumps to allow the passive filtration of seawater during the pump deployment.Yields of radium fixation on the cartridges filled with Mn-fiber and placed on in situ pumps are ca. 30% when combining the two cartridges. Because large volumes of seawater can be filtered with these pumps, this yields to effective volumes of 177–280 kg (that is, higher than that recovered from fourteen 12-l Niskin bottles). Finally, the effective volume of seawater that passed through Mn-fiber placed in nylon nets and deployed during 4 h ranged between 125 and 364 kg. Consequently, the two techniques that separate Ra isotopes in situ are good alternatives for pre-concentrating radium from seawater. They can save ship-time by avoiding repeated CTD casts to obtain the large volumes of seawater. This is especially true when in situ pumps are deployed to collect suspended particles. However, both methods only provide 228Ra/226Ra ratios. The determination of the 228Ra specific activity is obtained by multiplying this ratio by the 226Ra activity measured in a discrete sample collected at the same water depth.  相似文献   

9.
A series of experiments was conducted to evaluate the appropriateness of cross-flow ultrafiltration (CFUF) techniques for the determination of the phase speciation of monomethyl mercury (MeHg) in natural waters. Spiral-wound cartridge (Amicon S1Y1) and Miniplate (Amicon) were evaluated for their nominal molecular weight cut-offs of 1 and 10 kDa, respectively. The ultrafiltration behavior of standard macromolecules showed that the permeation of high molecular weight (HMW) organic macromolecules was not significant when a concentration factor (CF)>15 was used. The retention of low molecular weight (LMW) molecules was significant, especially at a low CF<5, suggesting that the use of a high CF (15) will minimize the retention of LMW molecules. Sorptive losses of MeHg in the solution phase to the 1 kDa membrane were negligible, but MeHg bound to HMW macromolecules was still retained (20%), even with a preconditioned membrane. The mass balance recovery of MeHg during ultrafiltration averaged 101±15% (n=7) and 105±14% (n=5) for the 1 and 10 kDa membranes, respectively. Sample storage over 24 h caused significant coagulation (47%) of the <10 kDa MeHg into the 10 kDa–0.45 μm colloidal or the particulate MeHg pool. The 1 kDa–0.45 μm colloidal MeHg in Galveston Bay and the Trinity River water samples accounted for 40–48% of the filter-passing MeHg, although the most abundant fraction (52–60%) of MeHg was the truly dissolved fraction (<1 kDa). The partition coefficient between the colloidal (1 kDa–0.45 μm) and truly dissolved MeHg (average log KC=5.2) was higher than the partition coefficient based on particle/filter-passing (average log KD=4.6) or particle/truly dissolved MeHg (average log KP=4.8), suggesting that MeHg has stronger affinity for natural colloids than macroparticulate materials (>0.45 μm).  相似文献   

10.
Biogeochemical processes in sediments under the influence of the Rhône River plume were studied using both in situ microelectrodes and ex situ sediment core incubations. Organic carbon (OC) and total nitrogen (TN) content as well as stable carbon isotopic composition of OC (δ13COC) were analysed in 19 surface sediments to determine the distribution and sources of organic matter in the Rhône delta system. Large spatial variations were observed in both the total O2 uptake (5.2 to 29.3 mmol m−2 d−1) and NH4+ release (−0.1 to −3.5 mmol m−2 d−1) rates at the sediment–water interface. The highest fluxes were measured near the Rhône River mouth where sedimentary OC and TN contents reached 1.81% and 0.23% respectively. Values of δ13COC ranged from −26.83‰ to −23.88‰ with a significant seawards enrichment tracing the dispersal of terrestrial organic matter on the continental shelf. The amount of terrestrial-derived OC reaches 85% in sediments close to the Rhône mouth decreasing down to 25% in continental shelf sediments. On the prodelta, high terrestrial OC accumulation rates support high oxygen uptake rates and thus indicating that a significant fraction of terrestrial OC is remineralized. A particulate organic carbon (POC) mass balance indicates that only 3% of the deposited POC is remineralized in prodelta sediments while 96% is recycled on the continental shelf. It was calculated that a large proportion of the Rhône POC input is either buried (52%) or remineralized (8%), mostly on the prodelta area. The remaining fraction (40%) is either mineralized in the water or exported outside the Rhône delta system in dissolved or particulate forms.  相似文献   

11.
Based on lab-culture experiments analyzing limitation and combination of iron and phosphorus on the growth of Cryptomonas sp. (Cryptophyceae), and the study of accumulation and release of Fe-bound P in sediment cores collected from the marine region of the Pearl River Estuary, China, reasons for the high frequency of phytoplankton bloom therein are discussed. Results show that the combined effect of Fe and P can obviously accelerate algal development, and the optimum culture conditions maintaining maximum growth rate are 0.05 μM Fe and 50 μM P. Cellular contents of Fe and P is consistent and the P:Fe molar ratio is 159:1. The optimum range of the P:Fe molar ratio in culture experiments for cell incubation is 500–1400. The vertical trends of total Fe and total P variations in sediments are parallel. Fe-bound P is the main species of inorganic sedimentary P. Through continuous leaching with agitation, 34–80% of exchangeable P and 4–23% of exchangeable Fe are concurrently released from the surficial sediments. This is a possible way by which nutrients are made available to phytoplankton. These factors might be responsible for a high frequency of harmful algal blooms in the Pearl River Estuary.  相似文献   

12.
The chemical speciation of Cu and Zn was investigated by voltammetric titration methods in the surface waters (10 m) of the western Black Sea during an Istanbul–Sevastopol cruise conducted in November 1998. Supporting parameters (temperature (T), salinity (S), pH, alkalinity (Alk), suspended particulate matter (SPM) and dissolved and particulate 234Th) were obtained in order to distinguish hydrographic features against involvement of the metals in biogeochemical processes. In the Turkish continental slope region, the cruise track intersected a narrow vein of colder water originating on the western shelf. The core of this cold water vein was characterised by a relatively low salinity, higher specific alkalinity and higher metal (especially Cu) and metal-binding ligand concentrations.A very large portion of Cu (93–99.8%) and Zn (82–97%) was organically complexed. The degree of complexation was highest in shelf waters and lowest in the central gyre. Titration data for Cu were modelled by two classes of organic binding ligands characterised by (CL1=3–12 nM, log K1′=13.1–13.9) and (CL2=20–70 nM, log K2′=9.4–11.2). These ligands occurred mainly in the ‘dissolved’ phase, as defined by 0.4-μm filtration. The stronger Cu-binding ligand seemed to be produced in situ in response to Cu concentration, whereas the weaker Cu-binding ligand appeared to be derived from terrestrial sources and/or reducing shelf sediments. Titration results for Zn were generally represented by one class of ligands (CL1=8–23 nM, log K1′=9.4–10.2), which were almost uniformly distributed between the ‘dissolved’ (78±8%) and the particulate phase (22±8%). The concentration of these strong Zn-binding ligands showed a very good correlation with SPM (r2=0.64), which improved when the dissolved ligands alone were considered (r2=0.78). It is hypothesised that these ligands were produced in situ by the bacterial breakdown of particulate organic matter.  相似文献   

13.
Benthic foraminiferal biomass, density, and species composition were determined at 10 sites in the Gulf of Mexico. During June 2001 and 2002, sediment samples were collected with a GoMex box corer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the >63-μm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin–luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (2–53 mg C m−2; 3600–44,500 individuals m−2, respectively) and inconsistently with water depth: although two 1000-m deep sites were geographically separated by only 75 km, the foraminiferal biomass at one site was relatively low (9 mg C m−2) while the other site had the highest foraminiferal biomass (53 mg C m−2). Although most samples from Sigsbee Plain (>3000 m) had low biomass, one Sigsbee site had >20 mg foraminiferal C m−2. The foraminiferal community from all sites (i.e. bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at 5 of the 10 sites, indicating that foraminifera constitute a major component of the Gulf's deep-water meiofaunal biomass.  相似文献   

14.
Biweekly composite averages of the standing stock of sea-surface chlorophyll (SSC) were derived from SeaWiFS satellite ocean-color data at 44 benthic sampling stations occupied along the continental slope and rise by the Deep Gulf of Mexico Benthos (DGoMB) program. At the 22 DGoMB sites north of 26°N and west of 91°W in the NW Gulf of Mexico, annual average SSC was 0.19 mg m−3, ranging at most locations from annual highs of about 0.3 mg m−3 in November–February to lows of about 0.1 mg m−3 in May–August. Comparison of three years of SeaWiFS data (January 1998–December 2000) showed little inter-annual variation at these NW Gulf stations. In contrast, at the 22 NE Gulf sites north of 26°N and east of 91°W, SSC averaged 2.8 times higher than in the NW Gulf, showing also strong inter-annual variation. Maxima in the NE region occurred in November–February and also during summers. The summer maxima were associated with Mississippi River water transported offshore to the east and southward by anticyclonic eddies in the NE Gulf. The apparent increases in SSC in June–August at NE Gulf stations reached average monthly concentrations >50% greater than in November–February. Based on a primary productivity model and a vertical flux model, the calculated export of particulate organic carbon (POC flux reaching the seafloor) was estimated as 18 mg C m−2 day−1 at the 22 NE Gulf stations, and 9 mg C m−2 day−1 at the 22 NW Gulf stations. These estimates are comparable to fluxes measured by benthic lander by others in the DGoMB program, which may drive the differences in west versus east bathymetric zonation and community structure of macrobenthos that were sampled with large box corers by others in the DGoMB program.  相似文献   

15.
As part of the Western Arctic Shelf–Basin Interactions (SBI) project, the production and fate of organic carbon and nitrogen from the Chukchi and Beaufort Sea shelves were investigated during spring (5 May–15 June) and summer (15 July–25 August) cruises in 2002. Seasonal observations of suspended particulate organic carbon (POC) and nitrogen (PON) and large-particle (>53 μm) size class suggest that there was a large accumulation of carbon (C) and nitrogen (N) between spring and summer in the surface mixed layer due to high phytoplankton productivity. Considerable organic matter appeared to be transported from the shelf into the Arctic Ocean basin in an elevated POC and PON layer at the top of the upper halocline. Seasonal changes in the molar carbon:nitrogen (C:N) ratio of the suspended particulate organic matter (POM) pool reflect a change in the quality of the organic material that was present and presumably being exported to the sediment and to Arctic Ocean waters adjacent to the Chukchi and Beaufort Sea shelves. In spring, low particulate C:N ratios (<6; i.e., N rich) were observed in nitrate-replete surface waters. By the summer, localized high particulate C:N ratios (>9; i.e., N-poor) were observed in nitrate-depleted surface waters. Low POC and inorganic nutrient concentrations observed in the surface layer suggest that rates of primary, new and export production are low in the Canada Basin region of the Arctic Ocean.  相似文献   

16.
Although small copepods are one of the main dietary sources for many commercially important fish, their role in the pelagic trophic dynamics has traditionally been underestimated due to the methodology commonly used in plankton sampling. Temporal variation in abundance of adults and nauplii of small copepods (particularly Oithona plumifera) in nearshore waters on the south coast of South Africa was investigated fortnightly over 14 months at site (km) and location (100 m) scales. Sampling was within <500 m of the shore, where depth was ca. 10 m, using vertical hauls of an 80-μm mesh plankton net from 1 m above the seabed to the surface. Twenty-seven adult copepod taxa were recorded, but Oithona spp. was consistently the most abundant. Taxon richness was 7–19 on each sampling occasion. There was strong temporal variation (Oithona varied between 0 and 2300 m−3), but much of this was short-term variability (e.g. between consecutive sampling sessions), with no seasonality or other long-term discernable patterns. There were periods of consistently low numbers, but very high numbers often followed samples with low abundances. Nor was there spatial structure at the location scale, though numbers differed between sites. Despite considerable variability at the location scale within sites, Kenton consistently showed higher densities than High Rocks. Separate analyses, with Bonferroni adjustment, showed that this difference was significant on eight out of 21 occasions for Oithona, six for other pelagic copepods and three for nauplii. This suggests that hydrodynamics favour aggregation of plankton at Kenton. A high degree of short-term variability, with a tendency for aggregation of small zooplankton at certain sites has implications for both pelagic processes and food-web links between the benthic and pelagic environments.  相似文献   

17.
A new deep-sea laser Raman spectrometer (DORISS—Deep Ocean Raman In Situ Spectrometer) is used to observe the preferential dissolution of CO2 into seawater from a 50%–50% CO2–N2 gas mixture in a set of experiments that test a proposed method of CO2 sequestration in the deep ocean. In a first set of experiments performed at 300 m depth, an open-bottomed 1000 cm3 cube was used to contain the gas mixture; and in a second set of experiments a 2.5 cm3 funnel was used to hold a bubble of the gas mixture in front of the sampling optic. By observing the changing ratios of the CO2 and N2 Raman bands we were able to determine the gas flux and the mass transfer coefficient at 300 m depth and compare them to theoretical calculations for air–sea gas exchange. Although each experiment had a different configuration, comparable results were obtained. As expected, the ratio of CO2 to N2 drops off at an exponential rate as CO2 is preferentially dissolved in seawater. In fitting the data with theoretical gas flux calculations, the boundary layer thickness was determined to be  42 μm for the gas cube, and  165 μm for the gas funnel reflecting different boundary layer turbulence. The mass transfer coefficients for CO2 are kL = 2.82 × 10− 5 m/s for the gas cube experiment, and kL = 7.98 × 10− 6 m/s for the gas funnel experiment.  相似文献   

18.
In January–February 2001, we measured microbial biomass as ATP and community respiration as ETS activity of organisms < 200 μm in the aphotic zone of the Ross Sea. Microbial respiration amounted to 2.14 mmol C m− 2 day− 1 in the depth range 200–1000 m. Our daily estimates of carbon export are close to the daily percentage of net community production (NCP), removed as sinking biogenic particles from the upper 100 m in the entire Ross Sea, but lower than those of other oceanic systems. Comparing remineralization determined in this study with that obtained by sediment traps in the Ross Sea, it appeared that about 63% of organic carbon remineralized by respiration derived from POC pool. Such evidence highlighted POC source as the main organic fuel of the biological pump in the Ross Sea.  相似文献   

19.
We report measurements of dissolved iron (dFe, <0.4 μm) in seawater collected from the upper 300 m of the water column along the CLIVAR SR3 section south of Tasmania in March 1998 (between 42°S and 54°S) and November–December 2001 (between 47°S and 66°S). Results from both cruises indicate a general north-to-south decrease in mixed-layer dFe concentrations, from values as high as 0.76 nM in the Subtropical Front to uniformly low concentrations (<0.1 nM) between the Polar Front and the Antarctic continental shelf. Samples collected from the seasonal sea-ice zone in November–December 2001 provide no evidence of significant dFe inputs from the melting pack ice, which may explain the absence of pronounced ice-edge algal blooms in this sector of the Southern Ocean, as implied by satellite ocean-color images. Our data also allow us to infer changes in the dFe concentration of surface waters during the growing season. South of the Polar Front, a comparison of near-surface with subsurface (150 m depth) dFe concentrations in November–December 2001 suggests a net seasonal biological uptake of at least 0.14–0.18 nM dFe, of which 0.05–0.12 nM is depleted early in the growing season (before mid December). A comparison of our spring 2001 and fall 1998 data indicates a barely discernible seasonal depletion of dFe (0.03 nM) within the Polar Frontal Zone. Further north, most of our iron profiles do not exhibit near-surface depletions, and mixed-layer dFe concentrations are sometimes higher in samples from fall 1998 compared to spring 2001; here, the near-surface dFe distributions appear to be dominated by time-varying inputs of aerosol iron or advection of iron-rich subtropical waters from the north.  相似文献   

20.
To increase our understanding of the roles of black carbon (BC), a highly sorptive and recalcitrant material, we measured BC concentrations and fluxes in marine particulate organic carbon (POC) out of the water column in the Gulf of Maine (GoM), a representative coastal area downwind of important BC sources of the Northeastern United States. Concentrations ranged from < 0.1 to 16 μg/L in the spring and late summer, typically contributing between 1 and 20% of the POC. Water-column export fluxes were near 10 gBC/m2∙yr. These observations suggest that (a) up to 50% of the “molecularly uncharacterized” POC in this region's seawater is combustion-derived BC, and (b) the “bioavailabilities” of hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs) would be influenced substantially by sorption to BC. The observed BC spatial distributions imply that a large part of the BC was carried offshore by wind and that much of it is accumulated in the coastal sediments. On a global scale, these results suggest the GoM and other coastal areas with similar BC loadings accumulate significant amounts of highly recalcitrant organic carbon that remineralizes on geological time scales in the world's oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号