首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A detailed 40Ar/39Ar study, of mineral separates from the Jurassic Atlantic Continental Tholeiites (JACT) of Guyana (French Guyana and Surinam, South America), and Guinea (West Africa) related to the initial opening of the Central Atlantic, has been carried out. In French Guyana, plateau ages of 196.0 ± 5.7 Ma and 196.1 ± 7.5 Ma were obtained on single, small amphibole grains from NNW—SSE trending dykes. In Guinea, single biotite grains from intrusive formations from the Kakoulima and Fouta Djalon areas yielded plateau ages of 200.4 ± 0.2 Ma and 194.8 ± 0.5 Ma, concordant with high temperature apparent ages on other biotites. The bulk plagioclase samples display disturbed age spectra due to alteration and excess argon. However, intermediate temperature, weighted mean plagioclase ages are similar in both regions of Guyana and Guinea, ranging from 200.2 ± 2.4 Ma to 188.7 ± 1.9 Ma, partly in agreement with the amphibole and biotite data.

These data, combined with previous 40Ar/39Ar and U/Pb results from the northern part of the Central Atlantic margins, indicate intense magmatic activity distributed over a large area from Iberia to Liberia (ca. 4500 km long) for a short period of time (204-195 Ma, perhaps less for the bulk of the magmatism) during the initial break-up of Pangea continent. These data do not support an initiation of the magmatism from a radial volcano-tectonic system centred in the south of the region, as suggested by May [1], and the initial break-up seems to affect the whole Central Atlantic during a period of 9 Ma.  相似文献   


2.
Emerald, occurring in K-metasomatic rocks developed at the contact of the Carnaíba leucogranite with serpentinite (Bahia State, Brazil), has been dated using an original 40Ar/39Ar procedure. It combines step heating and spot fusion experiments on two types of phlogopite crystals: (1) bulk samples and individual grains extracted from the enclosing K-metasomatic host rocks; and (2) syngenetic solid inclusions precipitated along growing zones of the emerald host crystals. The second procedure uses in situ laser probe experiments on rock sections. In spite of the huge amounts of excess 40Ar detected in adjacent emerald, we could measure reliable ages of 1951 ± 8 Ma and 1934 ± 8 Ma for the Trecho Velho and Braulia occurrences, respectively. Spot fusion data had higher discrepancy than the step heating data, but minute crystals of phlogopite included in emeralds bearing excess argon do not reveal excess argon. A muscovite belonging to the same granite hydrothermal complex gave a plateau age of 1976 ± 8 Ma, which may correspond to a higher closure temperature of the KAr system during the cooling of the whole pluton and associated hydrothermal halo.

These accurate measurements lead to the following conclusions: (1) direct emerald dating is possible; (2) in spite of a polyphase history during the Transamazonian orogenesis (2 Ga), combined step heating and spot fusion experiments give a better precision for granite-related emerald mineralization than the scattered ages obtained by Rb-Sr and K-Ar methods; (3) the late-Transamazonian tectonothermal retrograde event which probably caused the dispersion of previous Rb-Sr and K-Ar data is not revealed by our procedure; (4) the emerald mineralization and K-metamorphism appear to be linked with the thermal history of the leucogranite; (5) in addition to its use in polyphase crustal domains, accurate 40Ar/39Ar dating is of major interest in the field of metallogenic models, even, for instance, for mineralizations characterized by disturbed isotopic systems, which record effects as excess argon.  相似文献   


3.
This study reports the results of the first40Ar/39Ar combined induction furnace and laser probe dating of phengites from the Mulhacen HP/LT metamorphic complex in the Betic Cordilleras, southern Spain. Laser step heating and spot fusion analyses on different halves of a split single grain were made with a continuous laser probe. Spot fusion analysis resulted in ages of about 30–31 Ma in the core and ages as low as 25–26 Ma in the rim. Laser step heating on the other half of the grain gave a spectrum with apparent ages increasing from about 25 Ma to 29.5 Ma. The age spectrum and the decreasing ages towards the rim of the grain may imply that resetting essentially occurred by volume diffusion of radiogenic40Ar due to late stage reheating resulting from extensional tectonics. Ages around 30 Ma in the core of the grain are interpreted as minimum estimates of the cooling age of the main tectono-metamorphic phaseD2.

Induction furnace step heating on phengite separates from mica schists and one gneiss resulted in two types of age spectra. Type I spectra show monotonously rising apparent ages from14.5 ± 1.9 Ma to20.7 ± 0.2 Ma, and in a second sample from16.9 ± 0.7 to29.7 ± 0.2 Ma. Type II spectra are characterized by plateaus of14.4 ± 0.1 Ma (the gneiss sample),17.3 ± 0.1 Ma and17.6 ± 0.1 Ma. Type II spectra show low temperature apparent ages significantly below the plateau age, implying resetting subsequent to initial cooling. Modelling of the age spectra demonstrated that the plateau ages are possibly the result of strong resetting (75–85% of argon loss) of an older isotope system. Total fusion of a number of phengite single grains from marbles taken close to type II mica schists yielded ages of15.4 ± 1.2 Ma and17.0 ± 0.7 Ma. The observed repeated resetting is coeval with major volcanic activity in basins adjacent to the metamorphic ranges, pointing to a resetting by advective fluid transport related to volcanism.  相似文献   


4.
We present 39Ar–40Ar dating of phengite, muscovite and paragonite from a set of mafic and metasedimentary rocks sampled from the high-pressure (HP) metaophiolites of the Voltri Group (Western Alps) and from clasts in the basal layer conglomerates from the Tertiary molasse which overlie the high-pressure basement. The white mica-bearing rocks display peak eclogitic and blueschist-facies parageneses, locally showing complex greenschist-facies replacement textures. The internal discordance of age spectra is proportional to the chemical complexity of the micas. High-Si phengites from eclogite clasts record a 39Ar–40Ar age of ca. 49 Ma for the eclogite stage and ca. 43 Ma for the blueschist retrogression; phengites from a blueschist basement sample yield an age of ca. 40 Ma; low-Si muscovite from a metasediment dates the formation of the greenschist paragenesis at ca. 33 Ma. Our data indicate that the analyzed samples reached high-pressure conditions at different times over a time-span of c.a. 10 Ma. Subduction was continuing during exhumation and blueschist retrograde re-equilibration of higher-pressure, eclogite-facies rocks. This process kept the isotherms depressed, allowing the older HP-rocks to escape thermal re-equilibration. Our results, added to literature data, fit a tectonic model of a subduction–exhumation cycle, with different tectonic slices subducted at different times from Early Eocene until the Eocene–Oligocene boundary.  相似文献   

5.
The vacuum-encapsulation laser 40Ar39Ar technique allows extremely small (10−6 g) samples of fine-grained materials such as diagenetic clays to be dated. Here we show that the method can be extended to higher-grade clay minerals. The integration of transmission electron microscopic (TEM) characterization with 40Ar39Ar dating of vacuum encapsulated samples permits the resolution of the timing of metamorphic growth/cooling from the time of diagenesis. We have applied this technique to well characterized Lower Paleozoic slates and K-bentonites from the Welsh Basin, which span the transition from anchizonal to epizonal grade, which had been previously studied using RbSr and SmNd dating.

TEM observations of epizonal K-bentonites and slate showed that illite in these samples is of 2M1 polytype, of muscovite-like composition, and oriented parallel to cleavage, suggesting that they are of metamorphic origin. Total gas ages (equivalent to conventional KAr ages) for encapsulated epizonal K-bentonites and slate (340–408 Ma) are considerably variable. The Ar retention ages (calculated from 39Ar and 40Ar atoms retained in the sample after irradiation) are more consistent (383–411 Ma). The 39Ar recoil losses are minor for illites from whole rock samples of epizonal K-bentonites but very significant for clay separates of epizonal slate. Plateaus in age spectra were observed in epizonal K-bentonites and slate. The plateau ages (414–421 Ma) and retention ages (383–411 Ma) can be correlated with the onset of Acadian metamorphism and culmination of uplift and inversion of the Welsh Basin, respectively. These ages are significantly younger than the 450 Ma ages previously reported for diagenetic clays using the same method, suggesting that diagenetic history has been lost in these epizonal K-bentonites and slate.

TEM observations of anchizonal slates showed that there are two modes of illite. The first mode is similar to that observed in epizonal samples, suggesting a metamorphic origin. The second mode consists of the 1Md polytype, has typical diagenetic illite composition, and is oriented parallel to bedding, suggesting a diagenetic origin. Total gas ages for encapsulated anchizonal slates vary considerably (361–422 Ma). The retention ages are more consistent (413–432 Ma) than the total gas ages. The 39Ar recoil losses are more significant than those for epizonal K-bentonites and slate. Plateaus in age spectra are generally not observed. However, the consistent retention ages for the anchizonal slates correspond to the plateau ages for the epizonal samples, and are inferred to represent the onset of Acadian metamorphism.

These data, when combined with our previously published results for diagenetic shales, suggest that thermal conditions near the boundary of anchizonal and epizonal grades are necessary to completely reset Ar systems in shales and slates.  相似文献   


6.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

7.
An evaluation of the precision and resolution of the unspiked K–Ar dating method is presented with particular regard to the statistical significance of ages that are measured near or at the detection limit of the technique. Near-zero (historical) ages can be measured by the unspiked K–Ar technique with a precision that is essentially controlled by the precision with which the 40Ar/36Ar of the sample can be resolved from the present-day atmospheric value of 295.5. The best analytical precision on the isotopic ratio is ±0.05% (1σ) by this technique, which currently limits the lower detection limit of unspiked K–Ar ages to samples featuring at least 0.14% of radiogenic 40Ar. The corresponding youngest resolvable K–Ar age depends on the K content and atmospheric contamination of the sample. Total-fusion analysis of high-K refractory minerals like sanidine is not practicable via K–Ar, and the lowest resolvable age for medium-K samples more amenable to complete fusion is around 1.5 ka (on a single-run basis). It is argued that near-zero age measured with a probability density straddling or narrowing the time-origin cannot be handled without accounting for the non-negativity constraint imposed by the physical requirement of a positive age. The pertinent equations are derived both for the single-run case and for the case of independent replicates made on a single sample. We show that pooled K–Ar replicates can theoretically reduce the nominal uncertainty of individual unspiked ages (typically ±1.5 ka, 2σ) to a value that is close to the smallest 40Ar/39Ar isochron age uncertainty achievable on sanidine in the 0–2 ka range (±0.2 ka, 2σ). However, this performance is obtained at the cost of prohibitively large-sample statistics (n≥15) for medium-K feldspars datable via K–Ar. Coupled with the inability of the K–Ar approach to obviate the problems of excess/fractionated 40Ar and/or xenocrystic contamination, this makes the 40Ar/39Ar technique the method of choice for dating historical events by the K–Ar scheme.  相似文献   

8.
We report isotope analyses of helium, neon, argon, and xenon using different extraction techniques such as stepwise dynamic and static crushing, and high-resolution stepwise heating of three mantle xenoliths from Réunion Island. He and Ne isotopic compositions were similar to previously reported Réunion data, yielding a more radiogenic composition when compared to the Hawaiian or Icelandic mantle plume sources. We furthermore observed correlated 129Xe/130Xe and 136Xe/130Xe ratios following the mantle trend with maximum values of 6.93 ± 0.14 and 2.36 ± 0.06, respectively. High-resolution argon analyses resulted in maximum 40Ar/36Ar ratios of 9000–11,000, in agreement with maximum values obtained in previous studies. We observed a well-defined hyperbolic mixing curve between an atmospheric and a mantle component in a diagram of 40Ar/36Ar vs. 20Ne/22Ne. Using a mantle 20Ne/22Ne of 12.5 (Ne–B) a consistent 40Ar/36Ar value of 11,053 ± 220 in sample ILR 84-4 was obtained, whereas extrapolations to a higher mantle 20Ne/22Ne ratio of 13.8 (solar wind) would lead to a much higher 40Ar/36Ar ratio of 75,000, far above observed maximum values. This favours a mantle 20Ne/22Ne of about 12.5 considered to be equivalent to Ne–B. Extrapolated and estimated 40Ar/36Ar ratios of the Réunion, Iceland, Loihi, and MORB mantle sources, respectively, tend to be linearly correlated with air corrected 21Ne/22Ne and show the same systematic sequence of increasing relative contributions in radiogenic isotopes (Iceland–Loihi–Réunion–MORB) as observed for 4He/3He. In general, He–Ne–Ar isotope systematics of the oceanic mantle can be explained by following processes: (i) different degree of mixing between pure radiogenic and pure primordial isotopes generating the MORB and primitive plume (Loihi-type) endmembers; (ii) relatively recent fractionation of He relative to Ne and Ar, in one or both endmembers; (iii) after the primary fractionation event, different degrees of mixing between melts or fluids of MORB and primitive plume affinity generate the variety of observed OIB data, also on a local scale; (iv) very late-stage secondary fractionation during magma ascent and magma degassing leads to further strong variation in He/Ne and He/Ar ratios.  相似文献   

9.
Harutaka  Sakai  Minoru  Sawada  Yutaka  Takigami  Yuji  Orihashi  Tohru  Danhara  Hideki  Iwano  Yoshihiro  Kuwahara  Qi  Dong  Huawei  Cai  Jianguo  Li 《Island Arc》2005,14(4):297-310
Abstract   Newly discovered peloidal limestone from the summit of Mount Qomolangma (Mount Everest) contains skeletal fragments of trilobites, ostracods and crinoids. They are small pebble-sized debris interbedded in micritic bedded limestone of the Qomolangma Formation, and are interpreted to have been derived from a bank margin and redeposited in peri-platform environments. An exposure of the Qomolangma detachment at the base of the first step (8520 m), on the northern slope of Mount Qomolangma was also found. Non-metamorphosed, strongly fractured Ordovician limestone is separated from underlying metamorphosed Yellow Band by a sharp fault with a breccia zone. The 40Ar–39Ar ages of muscovite from the Yellow Band show two-phase metamorphic events of approximately 33.3 and 24.5 Ma. The older age represents the peak of a Barrovian-type Eo-Himalayan metamorphic event and the younger age records a decompressional high-temperature Neo-Himalayan metamorphic event. A muscovite whole-rock 87Rb–86Sr isochron of the Yellow Band yielded 40.06 ± 0.81 Ma, which suggests a Pre-Himalayan metamorphism, probably caused by tectonic stacking of the Tibetan Tethys sediments in the leading margin of the Indian subcontinent. Zircon and apatite grains, separated from the Yellow Band, gave pooled fission-track ages of 14.4 ± 0.9 and 14.4 ± 1.4 Ma, respectively. These new chronologic data indicate rapid cooling of the hanging wall of the Qomolangma detachment from approximately 350°C to 130°C during a short period (15.5–14.4 Ma).  相似文献   

10.
Yong-Jiang  Liu  Franz  Neubauer  Johann  Genser  Akira  Takasu  Xiao-Hong  Ge Robert  Handler 《Island Arc》2006,15(1):187-198
Abstract   Pelitic schists from Qingshuigou in the Northern Qilian Mountains of China contain mainly glaucophane, garnet, white mica, clinozoisite, chlorite and piemontite. Isotopic age dating of these schists provides new constraints on the formation of the high-grade blueschists at Qingshuigou. White mica 40Ar/39Ar ages range from 442.1 to 447.5 Ma (total fusion age of single grain) and from 445.7 to 453.9 Ma (integrated age of white mica concentrates). These ages (442.1–453.9 Ma) represent the peak metamorphic ages or cooling ages of the blueschists during exhumation shortly after peak metamorphism. The 40Ar/39Ar dates in the present study are similar to ages previously reported for eclogites and blueschists in the area; this suggests that both the eclogites and pelitic sediments underwent high-grade metamorphism during the same subduction event. From this chronological evidence and the presence of well-developed Silurian remnant-sea flysch and Devonian molasse, it is concluded that the Northern Qilian Ocean had closed by the end of the Ordovician, and rapid orogenic uplift followed in the Devonian.  相似文献   

11.
Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii   总被引:3,自引:0,他引:3  
We report new noble gas fusion and crushing data for six pillow rim glasses, recovered between 3 and 5 km water depth on the south rift zone of Loihi Seamount, Hawaii. Helium abundances of the glasses vary from 0.3 to 2.3 μcc/g, with 4He/3He ratios between 30000 and 27000 (24–27 RA), similar to previously reported values. The neon data form a correlation line which is similar to the Loihi-Kilauea line reported by Honda et al. [1], but extends to much higher ratios, up to 12.9 and 0.0382 for the 20Ne/22Ne and 21Ne/22Ne ratios, respectively. This provides conclusive evidence for the suggestion that the Hawaiian plume, thought to originate in the lower mantle, has a solar-like 20Ne/22Ne composition [1], but a slightly higher 21Ne/22Ne ratio. 40Ar/36Ar ratios of the deep rift-zone glasses are as high as 2600, and show a positive correlation with neon isotopic ratios. In contrast to neon and argon, all xenon isotopic compositions are isotopically indistinguishable from air, which either suggests preferential atmospheric contamination of xenon, or could indicate an atmospheric xenon isotopic composition for the lower mantle.  相似文献   

12.
Using a combination ofin-vacuo crushing and stepped heating, the40Ar39Ar technique has been applied to two K-feldspar-bearing sedimentary rocks from the Proterozoic of North China, with a view to studying ancient fluids trapped in these rocks and their chronology. Correlations between natural Ar isotopes and those produced by neutron irradiation permitted a clear distinction to be made between different components of natural argon. Crushing released Cl-correlated excess40Ar (and palaeoatmospheric36Ar) trapped in moderately saline fluid inclusions in quartz and possibly the K-feldspar. The very high40Ar/Cl ratios of these fluids (2.7 × 10−4 and1.7 × 10−4) is interpreted as indicating a metamorphic source for the40Ar. More surprisingly, crushing also released, from the K-feldspar, a K-correlated component with a very well defined40Ar/K ratio, which for both samples corresponded formally to an apparent age comparable to or slightly less than the stratigraphic age. In contrast, stepped heating yielded40Ar/K ratios corresponding to significantly younger ages which are interpreted as (low-grade) metamorphic ages. The explanation of the K-correlated component released on crushing and the significance (if any) of the distinct40Ar/K ratio is obscure, although several effects involving microporosity and a combination of39Ar recoil and diffusion are suggested. There is a contribution of this component to the stepped heating release pattern which may have implications for attempts to use K-feldspar as a40Ar39Ar thermochronometer.  相似文献   

13.
Mylonite,cataclasite and especially fault rocks subjected to both mylonitization and cata-clasis widely developed along the Kangding-Moxi fault zone.A mylonite zone has formed as a result of ductile shearing in early stage.In later stage brittle fracturing has occurred along this mylonite zone,accompanied by the formation of the present Kangding-Moxi fault zone.Later on,ductile shearing and multiperiods of brittle fracturing occurred along the fault zone.Differential stress magnitude d  相似文献   

14.
New UPb zircon crystallization ages and 40Ar/39Ar cooling ages from the Colombian Andes confirm the existence of rocks metamorphosed during the Orinoquian Orogenic Event (ca. 1.0 Ga) of northern South America. εNd (t = 1.1 Ga) for these rocks range from −3.9 to +0.91, which is interpreted as a mixture of Late Archean-Early Proterozoic crust with juvenile material produced during the 1.1 Ga orogenic event. The Colombian Grenville age rocks are part of a much longer metamorphic pericratonal belt, sporadically exposed along the Andes, in western-central Peru, southern Bolivia and northern Argentina. In addition, Nd model (TDM) ages for the Colombian rocks range from 1.9 to 1.45 Ga, similar to those obtained in the Grenville Province of the eastern U.S. and in the Mexican basement, placing constraints on Late Proterozoic-Early Paleozoic paleocontinental reconstructions.  相似文献   

15.
Age and significance of the North Pyrenean metamorphism   总被引:1,自引:0,他引:1  
39Ar-40Ar and 87Rb-87Sr studies of some metamorphic minerals from the North Pyrenean zone indicate that they crystallized about 92–104 m.y. ago on the east, 85 m.y. or older on the west. An amphibole from a lherzolite in the eastern area gives a plateau age at 103 m.y. The North Pyrenean metamorphism is shown to be a thermal effect of forcible lherzolite emplacement along the North Pyrenean zone. This latter process is related to the early breakup of the Europe-Iberia plate during the middle Cretaceous time.  相似文献   

16.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


17.
The Bloody Bluff fault zone, which divides the New England Avalon zone and Nashoba zone, contains at least two shear zones that are within Avalonian rocks. The Rice Road shear zone (sinistral, strike-slip) affects the Westboro Formation and is intruded by the 630 Ma Dedham Granite. The Rice Road shear zone, and equivalent pre-granite mylonites appearing in drill cores, parallel the terrane boundary, and may have controlled the later mylonitization. The Nobscot shear zone (dextral, strike-slip) is a prograde shear zone cutting a granite assumed to be related to the surrounding 630 Ma plutons. Similar shear zones have been seen cutting Late Proterozoic plutons in the New England Avalon zone, and represent a series of en echelon strike-slip shears. The Burlington mylonite zone (shear sense equivocal) is part of the terrane boundary. This is a retrograde shear zone that forms the southeastern border of the Wolfpen lens, a lenticular body of sheared and altered metamorphic and intrusive rock that has been assumed to be part of the New England Avalon zone. Microstructural characteristics indicate that the Burlington mylonite zone was active after the Nobscot shear zone. In particular, quartz in the Nobscot shear zone was dynamically recrystallized by a combination of grain boundary migration and rotation recrystallization processes, thought to occur during shearing at upper-greenschist conditions. In contrast, quartz in the Burlington mylonite zone was recrystallized predominantly by rotation recrystallization, indicating lower-greenschist, retrograde, deformation. The two shear zones are too close for these differences to be a result of a simple thermal field gradient.While mineral assemblages in most of the study area indicate no metamorphic grade higher than upper-greenschist temperatures, the Wolfpen lens contains amphibolites with assemblages formed at temperatures above the oligoclase isograd, indicating mid-amphibolite facies metamorphism. As metamorphic contrast is one of the key features differentiating the Nashoba zone from the New England Avalon zone, the Wolfpen lens cannot be assumed to be part of Avalon. It may be a small block of rocks of intermediate grade between the two terranes.  相似文献   

18.
Isotope and hydrochemical data of the thermal water system in Cieplice laskie Zdrój (Spa) indicate the existence of two subsystems that greatly differ in volume and which meet at the fault zones of a granitic horst, where they discharge at an altitude of about 340m. One of the subsystems is very small (about 4 × 103 m3) as indicated by the tritium age of the order of 10 years and a low outflow rate. Its recharge area found from the δ18O and δD values, is about 200m above the springs, most probably on the slopes of the foothills of the Karkonosze Mountains south-southwest of the spa. The large subsystem contains water which is free of tritium and whose 14C content is from 1 to 8 pmc with δ13C = −8.0 to −9.2‰. The isotopic composition of this water reflects either the climatic effect (low-altitude recharge during a cooler pre-Holocene climate) or the altitude effect (recharge in the early Holocene period at about 1000m at the heights of the Karkonosze assuming that the 14C concentration is strongly reduced by exchange with calcite in veins). For the former hypothesis, the recharge area of this water is probably either at the foot of the southeastern slopes of the Kaczawa Mountains or/and at the foot of the Rudawy Janowickie Mountains, to the east of Cieplice. The noble gas temperatures are more consistent with the pre-Holocene recharge. Similarly, the 4He excess and 40Ar/36Ar ratio support the hypothesis of a pre-Holecene age. The constant 3He/4He ratio of 26 × 10−8 for highly different helium contents indicates crustal origin of helium. For the pre-Holocene age of water its volume is calculated at >- 109m3 (stagnant water in micropores and mobile water in fractures) and the hydraulic conductivity of the host granite massif is estimated at about 7 × 10−8 ms−1. Two outflows from this subsystem have different and variable fractions of a modern water component (bomb age), most probably originating from the bank infiltration of a nearby stream.  相似文献   

19.
Noble gases were extracted in steps from grain size fractions of microdiamonds ( < 100 μm) from the Kokchetav Massif, Northern Kazakhstan, by pyrolysis and combustion. The concentration of 4He in the diamonds proper (liberated by combustion) shows a 1/r dependence on grain size. For grain diameters > 15 μm the concentration also decreases with the combustion step. Both results are clear evidence that 4He has been implanted into the diamonds from -decaying elements in the surrounding matrix. The saturation concentration of 4He(5.6 × 10−4 cm3 STP/g) is among the very highest observed in any terrestrial diamonds. Fission xenon from the spontaneous fission of 238U accompanies the radiogenic 4He; the 136Xef/4He ratio of (2.5 ± 0.3) × 10−9 agrees well with the production ratio of 2.3 × 10−9 expected in a reservoir where Th/U 3.3. Radiogenic 40Ar is predominantly ( > 90%) set free upon combustion; it also resides in the diamonds and appears to have been incorporated into the diamonds upon their formation.

3He, on the other hand is mainly released during pyrolysis and hence is apparently carried by ‘contaminants’. The concentration in the diamonds proper is of the order of 4 × 10−12 cm3 STP/g, with a 3He/4He ratio of 1 × 10−8. Excess 21Ne, similarly, appears to be present in contaminants as well as in diamonds proper. These two nuclides in the contaminants must have a nucleogenic origin, but it is difficult to explain their high concentrations.  相似文献   


20.
New noble gas data of ultramafic xenoliths from Réunion Island, Indian Ocean, further constrain the characteristics of primordial and radiogenic noble gases in Earth’s mantle plume reservoirs. The mantle source excess of nucleogenic 21Ne is significantly higher than for the Hawaiian and Icelandic plume reservoirs, similar to excess of radiogenic 4He. 40Ar/36Ar of the Réunion mantle source can be constrained to range between 8000 and 12 000, significant 129Xe and fission Xe excess are present. Regarding the relative contribution of primordial and radiogenic rare gas nuclides, the Réunion mantle source is intermediate between Loihi- and MORB-type reservoirs. This confirms the compositional diversity of plume sources recognized in other radioisotope systematics. Another major result of this study is the identification of the same basic primordial component previously found for the Hawaiian and Icelandic mantle plumes and the MORB reservoir. It is a hybrid of solar-type He and Ne, and ‘atmosphere-like’ or ‘planetary’ Ar, Kr, Xe (Science 288 (2000) 1036). 20Ne/22Ne ratios extend to maximum values close to 12.5 (Ne-B), which is the typical signature of solar neon implanted as solar corpuscular radiation. This suggests that Earth’s solar-type noble gas inventory was acquired by small (less than km-sized) precursor planetesimals that were irradiated by an active early sun in the accretion disk after nebular gas dissipation, or, alternatively, that planetesimals incorporated constituents irradiated in transparent regions of the solar nebula. Previously, such an early irradiation scenario was suggested for carbonaceous chondrites which follow common volatile depletion trends in the sequence CI–CM–CV–Earth. In turn, CV chondrites closely match Earth’s mantle composition in 20Ne/22Ne, 36Ar/22Ne and 36Ar/38Ar. This indicates that mantle Ar could well be a planetary component inherited from precursor planetesimals. However, a corresponding conclusion for mantle Kr and Xe is less convincing yet, but this may be just due to the lack of appropriate ‘meteoritic’ building blocks matching terrestrial composition. Alternatively, heavy noble gases in Earth’s mantle could be due to admixing of severely fractionated air, but this effect must have affected all mantle sources to a very similar extent, e.g. by global subduction before the last homogenization of the mantle reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号