首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polarization direction or 'sign’ of reflected converted P–S waves depends upon the angle of incidence of the incident P-wave. Sign reversal due to reversal of the angle of incidence is often encountered and is an impediment to P–S wave processing and imaging, because when P–S events or P-S migrated images with mixed signs are stacked, destructive interference occurs. We have created and demonstrated a means of correcting for this reversal. To do this, a P-wave angle of incidence is calculated for every point in the image space. This is done by calculating a P–S reflected waveform for every point, by extrapolating the reflected S-wavefield backwards from the receiver line, and then cross-correlating this waveform with the S-wave reflections observed at the receiver line. A multiplier, (sgn α) is assigned to each point in the image space, where α is the angle of incidence of the P-wave. The multiplier was applied to a set of prestack reverse time migration images derived from a cross-borehole physical elastic model data set. The improvement in the stacked image when the sign correction is applied is spectacular. The P-S image quality is comparable to, or better than, stacked migrated P-P images. The method appears to be applicable to all reflection modes and to all recording geometries.  相似文献   

2.
克希霍夫法VSP多波联合成像   总被引:3,自引:2,他引:1       下载免费PDF全文
VSP 转换波跟VSP 纵波或常规地面转换波相比,具有较高的分辨率和信噪比,但传统的VSP成像方法只利用了反射P波信息,而把转换波(反射S波、透射S波)以及透射P波当作影响成像质量的噪音.本文给出了一种VSP共炮点道集多分量地震资料克希霍夫法偏移成像的方法.本方法充分利用了多波(反射P波、反射S波、透射P波、透射S波)信息,根据转换点处四种波同时起跳,能量叠加最大的原理,从接收点分别用向绕射点延拓它们的能量,并将其叠加起来,求得的和最大的一点即反射点.通过模型试算和实际资料处理表明,此法成像精度高,信噪比高,且有利于改善剖面的频率特性.  相似文献   

3.
—This numerical study is devoted to distortions of local anomalies which are revealed by 2-D and 3-D cross-borehole seismic tomography based on first arrival travel times. The fact that prolonged subvertical anomalies may disappear in the final velocity model is well known. But distortions are also inherent to images of local inhomogeneities. These distortions are accompanied with false anomalies of the opposite sign located just above and below true ones. I offer a semi-empirical explanation of their existence, proving that they are an inherent consequence of observation geometry incompleteness. To improve the quality of the model obtained with cross-borehole tomography, a 3-D acquisition geometry may be used when additional boreholes are positioned around the target object. Results of 3-D tomographic experiments however may be considerably distorted for another reason nonaccounted bending of seismic rays.¶To generate the travel times, a ray-tracing procedure making use of the graph theory was applied. Tomographic inversion was performed by an algorithm based on the assumption of the unknown function smoothness.  相似文献   

4.
工程VSP与地震CT联合探测方法及其在岩土工程的应用   总被引:11,自引:6,他引:5       下载免费PDF全文
垂直地震剖面(Vertical Seismic Profile,简称VSP)和层析成像(Computerized Tomography,简称CT)方法,不仅能够使用统一的数学方法描述(如射线理论),并且在其勘探实践活动中完全可融为一体而成为优化技术组合下的高分辨工程物探方法.特别是在井间地震CT数据采集现场施工中,充分利用VSP和井间CT数据采集方式的兼容性和优化观测系统参数设计,几乎可以不增加野外工作费用,就能够同时获取井间地震CT数据和施测孔的逆向VSP数据体.如井中排列多点激发,地面各接收点构成多偏移距逆向VSP道集,并可组成关于孔中各炮点的变偏移距逆向VSP道集.这种高分辨技术组合在近地表大中型岩土洞室工程测试环境中更易于实现.本文简述了工程VSP与地震CT数据一体化观测系统,介绍了联合速度反演初始模型的建立与成像处理流程,给出VSP和CT联合成像方法应用于三峡大坝工程物探检测中的一个实例简介,最后得出相关结论并提出建议.  相似文献   

5.
Seismic waves propagate through the earth as a superposition of different wave modes. Seismic imaging in areas characterized by complex geology requires techniques based on accurate reconstruction of the seismic wavefields. A crucial component of the methods in this category, collectively known as wave‐equation migration, is the imaging condition that extracts information about the discontinuities of physical properties from the reconstructed wavefields at every location in space. Conventional acoustic migration techniques image a scalar wavefield representing the P‐wave mode, in contrast to elastic migration techniques, which image a vector wavefield representing both the P‐ and S‐waves. For elastic imaging, it is desirable that the reconstructed vector fields are decomposed into pure wave modes, such that the imaging condition produces interpretable images, characterizing, for example, PP or PS reflectivity. In anisotropic media, wave mode separation can be achieved by projection of the reconstructed vector fields on the polarization vectors characterizing various wave modes. For heterogeneous media, because polarization directions change with position, wave mode separation needs to be implemented using space‐domain filters. For transversely isotropic media with a tilted symmetry axis, the polarization vectors depend on the elastic material parameters, including the tilt angles. Using these parameters, we separate the wave modes by constructing nine filters corresponding to the nine Cartesian components of the three polarization directions at every grid point. Since the S polarization vectors in transverse isotropic media are not defined in the singular directions, e.g., along the symmetry axes, we construct these vectors by exploiting the orthogonality between the SV and SH polarization vectors, as well as their orthogonality with the P polarization vector. This procedure allows one to separate all three modes, with better preserved P‐wave amplitudes than S‐wave amplitudes. Realistic synthetic examples show that this wave mode separation is effective for both 2D and 3D models with strong heterogeneity and anisotropy.  相似文献   

6.
The delay‐time Radon transform parametrizes coherent events in a seismic gather by the far‐offset trace delay time, instead of the conventional parabolic curvature or ray parameter. The reformulation may give a different physical insight into the aliasing effect in the Radon transformation and may also lead to a different algorithm. The delay‐time parametrization enables modelling of a seismic gather as the sum of coherent events with any form of moveout curve. For example, a parabolic curve can be used for traces within a moderate offset range and a linear moveout for far‐offset traces. When using this delay‐time Radon transform, it is the number of traces, rather than the spatial sampling, of the input gather that directly controls aliasing in the Radon transform image. A preconditioning operator that implicitly increases the number of input traces by spatial reconstruction (without physically performing the spatial resampling) may minimize aliasing noise in the Radon transform image.  相似文献   

7.
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equations. In this study, we compare two kinds of such wave equations: the first-order (velocity–stress) and the second-order (displacement–stress) separate elastic wave equations, with the first-order (velocity–stress) and the second-order (displacement–stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-difference method. Comparisons are given of wavefield snapshots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corresponding first-order or second-order full elastic wave equations. These mixed equations are computationally slightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-component processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.  相似文献   

8.
Electrical Resistivity Tomography (ERT) can provide images of subsurface electrical structure between two boreholes. Data quality control is a key issue before ERT inversion. However, there is no effective data quality control method on an ERT survey. In this paper, a method called common current gather for a bipole–bipole array (CCGbb) was proposed to check ERT data quality in a rapid way. Synthetic models were conducted to compare the response difference between pole–pole array and bipole–bipole array. A field work at granite area was tested to verify the applicability of the proposed CCGbb method. From the results of this study, we suggested that conducting CCGbb before ERT inversion and a cross-borehole tracer test for both field data quality control and possible water conducting fractures (WCFs) delineation.  相似文献   

9.
井间高分辨率纵横波层析成像研究井间油藏   总被引:3,自引:1,他引:2       下载免费PDF全文
瞿辰  杨文采  于常青 《地球物理学报》2010,53(12):2944-2954
采用视速度-偏振井间波场分离法分离得到纵波和横波波场,使用跨孔地震走时层析成像级联方法计算井间纵波和横波速度结构以及泊松比空间分布.综合纵横波速度、泊松比和测井参数,分析两井间岩性和储层特性.数值模型试验表明该方法垂直分辨率达到主频波长的1/4,并能准确分辨倾斜断层和垂直断层.处理相同纵波资料结果表明本文方法分辨率远远高于以往的井间走时层析成像方法,比井间声波层析成像分辨率更高.使用该方法处理垦71区井间资料,得到同台同源纵波和横波速度结构和泊松比分布.泊松比的低/高变化与测井参数指示的砂/泥岩层基本吻合.根据泊松比分布,参考岩石地震物理学测试数据,可以区分井间介质中的泥岩层、砂岩层,以及砂岩层中的饱水和饱油区,确定储层的连通性,圈定井间的剩余油藏.  相似文献   

10.
The elastic reverse time migration approach based on the vector-wavefield decomposition generally uses the scalar product imaging condition to image the multicomponent seismic data. However, the resulting images contain the crosstalk artefacts and the polarity reversal problems, which are caused by the nonphysical wave modes and the angle-dependent reduction of image amplitudes, respectively. To overcome these two problems, we develop an amplitude-preserving elastic reverse time migration approach based on the vector-decomposed P- and S-wave seismic records. This approach includes two key points. The first is that we employ the vector-decomposed P- and S-wave multicomponent records to independently reconstruct the PP and PS reflection images to mitigate the crosstalk artefacts. The second is that we propose two schemes in addressing the issue of polarity reversal problem in the conventional PP image. One solution is to adopt the angle-dependent equation. Another one is to reconstruct an amplitude-preserving PP image with a separated scalar P-wave particle velocity, which has a clear physical meaning. Numerical examples using two-dimensional and three-dimensional models demonstrate that the proposed elastic reverse time migration approach can provide the images with better amplitude-preserving performance and fewer crosstalk artefacts, compared with the conventional elastic reverse time migration approach based on the scalar product imaging condition.  相似文献   

11.
The Lihir open pit mine in Papua New Guinea is located inside an old volcano where geothermal activity is strongly present. Outbursts of hot water and steam into the mining areas were a major safety concern. Passive seismic monitoring was carried out at the mine to investigate whether the geothermal activities could be detected and located using microseismic techniques in a mining environment. In this trial, sixteen triaxial geophones which can withstand temperature up to 200°C were used and installed in four deep boreholes inside the pit. The microseismic events were discriminated using the STA/LTA triggering criterion. During 6 weeks of monitoring, more than 17,000 events were recorded. Approximately 12% of the events showed harmonic vibration characteristics similar to those observed in other geothermal and volcanic areas, suggesting that the geothermal activity inside the pit was captured by the microseismic monitoring system. More than 75% of the events present both P and S waves and they were interpreted to be associated with rock fracturing due to stress release near the bottom of the pit. Many geothermal-type events were located in areas where shear events occurred, implying that the detected geothermal events were not far from the mining area below the pit and they may also be associated with mining. The borehole installation of the geophones significantly reduced the interference of mining noise and achieved good observation of the seismic events. However, equipment installation requires great attention as the geophones may be destroyed due to unexpected rising temperature within the boreholes.  相似文献   

12.
In seismic migration, it is important to sample a range of dips around the local structural dip at each image point. Meaningful images are obtained only where this condition holds. For cross-hole seismic reflection surveys, the distribution of dips sampled at each image point is controlled principally by the survey geometry, including source and receiver array lengths and their element spacings. Using a real data set as an example, we show how survey geometry can limit imaging capability close to the boreholes and even in the middle of the section between the boreholes. At the processing stage, effective removal of direct waves and accurate estimation of the velocity field are essential for optimizing image quality. For migration, we propose a generalized Berryhill (GB) scheme which is based on the Kirchhoff integral and takes into account both the near-field and far-field terms. This should improve the ability to image close to source and receiver arrays, provided that the element spacing in the nearby array is small enough.  相似文献   

13.
Seismic data recorded in the upper mantle triplication distance range between 10° and 30° are generated by wave propagation through complex upper mantle structure. They can be used to place constraints on seismic velocity structures in the upper mantle, key seismic features near the major discontinuities, and anisotropic structure varying with depth. In this paper, we review wave propagation of the upper mantle triplicated phases, how different key seismic features can be studied using upper mantle triplicated data, and the importance of those seismic features to the understanding of mantle temperature and composition. We present two examples of using array triplicated phases to constrain upper mantle velocity structures and detailed features of a certain discontinuity, with one for a shallow event and the other for deep events. For the shallow event, we present examples of how the array triplication data can be used to constrain several key properties of the upper mantle: existence of a lithospheric lid, existence of a low velocity zone beneath the lithospheric lid, and P/S velocity ratio as a function of depth. For deep events, we show examples of how array triplication data can be used to constrain the detailed structures of a certain discontinuity: velocity gradients above and below the discontinuity, velocity jumps across the discontinuity and depth extents of different velocity gradients. We discuss challenges of the upper mantle triplication study, its connection to other approaches, and its potential for further studying some other important features of the mantle: the existence of double 660-km discontinuities, existence of low-velocity channels near major discontinuities and anisotropy varying with depth.  相似文献   

14.
叠前共炮点道集的奇性反演研究   总被引:1,自引:0,他引:1       下载免费PDF全文
讨论了地震波场的Fourier积分算子奇性反演理论与方法,得出常数背景假设条件下二维共炮点道集奇性反演的解析表达式.构造了两个理论地震模型,分别进行二维有限差分正演与奇性反演的数值计算将二维Fourier积分算子奇性反演方法用于野外的二维地震勘探叠前共炮点记录.在勘探范围内,当介质波速变化相对背景波速符合小扰动假设时,理论模型与实际地震数据的计算结果表明这种奇性反演方法的有效性和实用性  相似文献   

15.
利用联合反演技术进行反射地震的波速成象   总被引:5,自引:0,他引:5       下载免费PDF全文
本文介绍了根据反射地震数据进行波速成象的一种方法,其基础为多种反演技术的综合。由于要求的波速图象C(x,z)具有间断性,除利用走时数据T(x,t)外,在地层比较水平的情况下,还利用了均方根速度V(x,t)和统计子波W(t)的数据来成象。计算机层析成象过程分为三步:首先重做速度分析,取得与初次反射走时一致的均方根速度数据;然后用反射走时与均方根速度联合反演对应分析道的层速度和界面深度;最后由联合反演结果和反射面走时求波速图象函数的数字化版。文中还给出了波速成象方法在我国西北某沉积盆地上的应用及验证结果。  相似文献   

16.
P/S震相幅值比判据对低震级地震事件的适用性检验c   总被引:1,自引:5,他引:1       下载免费PDF全文
潘常周  靳平  王红春 《地震学报》2007,29(5):521-528
基于中国新疆及中亚地区大量天然地震和地下爆炸,检验了较大震级情况下得到的区域P/S震相幅值比识别判据对低震级地震事件的适用性. 分析结果表明,对较大震级地震事件具有较好识别效果的P/S震相幅值比判据对低震级事件同样适用,而且对低震级事件也具有与较大震级事件大致相当的识别效果. 据WMQ、BLK、MUL和MAK台的25个识别效果较好的P/S震相幅值比判据统计, 大于ML3.5和ML3.5以下地震事件的误识率之差约为2个百分点.   相似文献   

17.
Applicability of regional P/S amplitude ratios for the discrimination of low-magnitude seismic events was tested and proved using earthquakes and explosions in Central Asia. Results obtained show that regional P/S amplitude ratios which may discriminate medium or large magnitude events well, are also applicable to low magnitude events. Their performances for low magnitude events are almost as good as that for medium or large events. Statistical comparisons based on 25 P/S discriminate from the four seismic stations WMQ, BLK, MUL and MAK showed that the average misclassification rate for low-magnitude seismic events averagely was only 2 percent higher than that for medium and large magnitude seismic events.  相似文献   

18.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

19.
Impedance is a physical parameter that plays an important role in seismic data processing and interpretation. A relative impedance perturbation (the ratio of the impedance perturbation and the impedance for the background models) imaging method in depth domain based on the reflection wave equation is proposed. Under the small perturbation assumption, primary wave and high-frequency approximation condition, a linear propagation equation of the primary reflection waves based on the relative impedance perturbation was first derived. On this basis, we further derived the imaging formula of the relative impedance perturbation using a linear inversion theory. Then, the source–receiver bidirectional illumination compensation was used to improve the image quality of the subsurface structures. The image result obtained by this method can be used to estimate the relative impedance perturbation. In the angle domain, the extracted near-angle-domain image gather with amplitude compensation can estimate the relative impedance perturbation, and the far-angle image gather provides the estimation of the relative velocity perturbation (the ratio of the velocity perturbation and the background velocity). Finally, several numerical tests demonstrate the effectiveness of the method.  相似文献   

20.
We develop the true‐amplitude prestack migration of multicomponent data based on the use of elastic Gaussian beams for walkaway vertical seismic profile (VSP) acquisition systems. It consists in a weighted summation of multishot data with specific weights, computed by tracing elastic Gaussian beams from each imaging point of the target area towards the sources and receivers. Each pair of beams may be connected with either a pair of P‐rays (PP‐image) or the P‐ray towards sources and the S‐ray to receivers (PS‐image) and is uniquely determined by dip (the angle of the bisector between the rays and the vertical direction) and opening (the angle between the rays) angles. Shooting from the bottom towards the acquisition system helps to avoid well‐known troubles, in particular multipathing for the imaging conditions in complex velocity models. The ability to fix the dip angle and implement summation over opening angles leads to the so‐called selective images that contain mostly interfaces with desired slopes. On the other hand, a set of images computed for a range of opening angles by summation over all available dip angles is used as input of an AVO‐like inversion procedure for the recovery of elastic parameters. The feasibility of this imaging procedure is verified by synthetic data for 2D realistic elastic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号