首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As in the observed record, the termination of El Niño in the coupled IPCC-AR4 climate models involves meridional processes tied to the seasonal cycle. These meridional processes both precondition the termination of El Niño events in general and lead to a peculiar termination of extreme El Niño events (such as those of 1982–83 and 1997–98), in which the eastern equatorial Pacific warm sea surface temperature anomalies (SSTA) persist well into boreal spring/early-summer. The mechanisms controlling the peculiar termination of extreme El Niño events, which involves to the development of an equatorially centred intertropical convergence zone, are consistent across the four models that exhibit extreme El Niños and observational record, suggesting that this peculiar termination represents a general feature of extreme El Niños. Further, due to their unusual termination, extreme El Niños exhibit an apparent eastward propagation of their SSTA, which can strongly influence estimates of the apparent propagation of ENSO over multi-decadal periods. Interpreting these propagation changes as evidence of changes in the underlying dynamical feedbacks behind El Niño could therefore be misleading, given the strong influence of a single extreme event.  相似文献   

3.
The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead–lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean–atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode.  相似文献   

4.
5.
Theoretical and Applied Climatology - The El Niño-Southern Oscillation (ENSO) phenomenon affects the global climate by changing temperature and precipitation patterns mainly in tropical...  相似文献   

6.
Xu  Hui  Chen  Lei  Duan  Wansuo 《Climate Dynamics》2021,56(11):3797-3815

The optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial error makes a moderate El Niño event to be predicted as an extremely strong event.

  相似文献   

7.
In the past three decades, the strongest central Pacific (CP) El Niño event was observed in 2009–2010 by satellites. When intensity of this CP El Niño reached its maximum, large diurnal variations of sea surface temperature (SST) were also observed from tropical atmosphere ocean moorings in the central equatorial Pacific. Solar radiation in the equatorial central Pacific is larger than 140 W/m2, which leads to the amplitude of diurnal cycle of SST primarily determined by large-scale wind patterns. Intraseasonal westerly wind events (WWEs) can lead to an eastward displacement of the warm pool and also can weaken the trade winds in central Pacific. When the occurrence of equatorial WWEs is more than 20 days in a month, monthly mean wind speed in central equatorial Pacific has high possibility of wind speed less than 3 m/s, thus has pronounced diurnal cycle of SST. The diurnal cycle of SST will rectify daily mean SST. Reduced mixing at the base of the mixed layer and suppression of entrainment due to the accumulated effect of diurnal cycle may lead to warmer SST in the following month. This study suggests the occurrence of more diurnal SST events may contribute to the increasing intensity of the CP El Niño events.  相似文献   

8.
Present work compares impacts of El Niño Modoki and El Niño on anomalous climate in the Pacific rim during boreal winters of 1979–2005. El Niño Modoki (El Niño) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple “boomerangs” of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those “boomerangs” reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Niño Modoki owing to displacement of the wet “boomerang” arms more poleward toward east. Discontinuities at outer “boomerang” arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Niño Modoki, while much of the western USA is wet during El Niño. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Niño Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Niño. The East Asian winter monsoon related anticyclone is over the South China Sea during El Niño Modoki as compared to its position over the Philippine Sea during El Niño, causing opposite precipitation anomalies in the southern East Asia between the two phenomena.  相似文献   

9.
Wansuo Duan  Ben Tian  Hui Xu 《Climate Dynamics》2014,43(5-6):1677-1692
In this paper, an optimal forcing vector (OFV) approach is proposed. The OFV offsets tendency errors and optimizes the agreement of the model simulation with observation. We apply the OFV approach to the well-known Zebiak–Cane model and simulate several observed eastern Pacific (EP) El Niño and central Pacific (CP) El Niño events during 1980–2004. It is found that the Zebiak–Cane model with a proper initial condition often reproduces the EP-El Niño events; however, the Zebiak–Cane model fails to reproduce the CP-El Niño events. The model may be much more influenced by model errors when simulating the CP-El Nino events. As expected, when we use the OFV to correct the Zebiak–Cane model, the model reproduces the three CP-El Niño events well. Furthermore, the simulations of the corresponding winds and thermocline depths are also acceptable. In particular, the thermocline depth simulations for the three CP-El Niño events lead us to believe that the discharge process of the equatorial heat content associated with the CP-El Niño is not efficient and emphasizes the role of the zonal advection in the development of the CP-El Nino events. The OFVs associated with the three CP-El Niño events often exhibit a sea surface temperature anomaly (SSTA) tendency with positive anomalies in the equatorial eastern Pacific; therefore, the SST tendency errors occurring in the equatorial eastern Pacific may dominate the uncertainties of the Zebiak–Cane model while simulating CP-El Nino events. A further investigation demonstrates that one of the model errors offset by the OFVs is of a pattern similar to the SST cold-tongue cooling mode, which may then provide one of the climatological conditions for the frequent occurrence of CP-El Nino events. The OFV may therefore be a useful tool for correcting forecast models and then for helping improve the forecast skill of the models.  相似文献   

10.
In the present paper, we explore the manner in which nonlinearities modulate El Niño events by investigating the optimal precursory disturbance for El Niño events in the Zebiak-Cane model. The initial anomalies of conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are investigated. The CNOPs evolve into stronger El Niño events than the LSVs and act as the optimal precursor for El Niño events. By examining the role of nonlinearities in El Niño events induced by CNOPs and LSVs, we determined that, when the initial anomalies of the CNOP and LSV structures are large, the nonlinearities enhance CNOP-El Niño events but suppress LSV-El Niño events. Nonlinearities in the Zebiak-Cane model arise from nonlinear temperature advection (NTA), sub-surface temperature parameterization (STP), and wind stress anomalies (WSA). Using these types of nonlinearities, we trace the approach of the nonlinearities modulating the CNOP- and LSV-El Niño events. The results demonstrate that nonlinearities that originate from NTA enhance both CNOP-El Niño events and LSV-El Niño events, while nonlinearities originating from STP and WSA suppress these events. For the CNOP-El Niño events, the enhancement effect of NTA is larger than the suppression effect of STP and WSA, resulting in the combined effect of the nonlinearities in the Zebiak-Cane model being an enhancement of the CNOP-El Niño events. However, for the LSV-El Niño events, the enhancement effect of NTA is smaller than the suppression effect of WSA and STP. Consequently, the combined effect of the nonlinearities in the Zebiak-Cane model suppresses the LSV-El Niño events.  相似文献   

11.
12.
孙丹  薛峰  周天军 《大气科学进展》2013,30(6):1732-1742
Based on NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmo- spheric Research) reanalysis data from 1979 to 2010, the impacts of two types of E1 Nino on atmospheric circulation in the Southern Hemisphere (SH) are analyzed. It is shown thaL when a warming event occurs in the equatorial eastern Pacific (EP E1 Nino), there is a negative sea level pressure (SLP) anomaly in the east- ern Pacific and a positive one in the western Pacific. Besides, there exists a negative anomaly between 40°S and 60°S and a positive anomaly to the south of 60°S. When a warming event in the central Pacific (CP E1 Nino) occurs, there appears a negative SLP anomaly in the central Pacific and a positive SLP anomaly in the eastern and western Pacific, but the SLP anomalies are not so evident in the SH extratropics. In particular, the Pacific-South America (PSA) pattern induced by the CP E1 Nino is located more northwestward, with a weaker anomaly compared with the EP E1 Nino. This difference is directly related with the different position of heating centers associated with the two types of E1 Nino events. Because the SST anomaly associated with CP E1 Nino is located more westward than that associated with EP El Nino, the related heating center tends to move westward and the response of SH atmospheric circulation to the tropical heating changes accordingly, thus exciting a different position of the PSA pattern. It is also noted that the local meridional cell plays a role in the SH high latitudes during EP E1 Nino. The anomalous ascending motion due to the enhancement of convection over the eastern Pacific leads to an enhancement of the local Hadley cell and the meridional cell in the middle and high latitudes, which in turn induces an anomalous descending motion and the related positive anomaly of geopotential height over the Amundsen-Bellingshausen Sea.  相似文献   

13.
14.
Scenarios for the development of large-scale vertical circulation anomalies during warm and cold phases of El Niño-Southern Oscillation are generalized based on the NCEP/NCAR reanalysis data for 1958-1998. Composite models of the cells of vertical circulation in the monsoon and trade-wind regions of the tropical Pacific are obtained for the first time for El Niño and La Niña separately. An unprecedented shift of the ascending branch of the zonal Walker circulation from the “maritime continent” of Indonesia to the east, to the central and eastern Pacific, was observed during the warm phase over the tropical Pacific; this shift was accompanied by an abrupt increase in the tropical cyclogenesis activity in the southern Pacific zone of convergence. On the contrary, during the cold phase, the ascending motions in the region of the summer Australian monsoon are subject to abrupt intensification. The reconstruction of the vertical meridional circulation during the warm phase manifested itself in the almost complete disappearance of the Hadley classic circulation over the central Pacific, characteristic of the trade-wind intertropical convergence zone (ITCZ), and in its replacement by the latitudinal monsoon circulation typical of the ITCZ over the Indian Ocean. During a cold phase, the Hadley circulation is both restored and intensified.  相似文献   

15.
B. Dewitte  J. Choi  S.-I. An  S. Thual 《Climate Dynamics》2012,38(11-12):2275-2289
Recent studies report that two types of El Ni?o events have been observed. One is the cold tongue El Ni?o or Eastern Pacific El Ni?o (EP El Ni?o), which is characterized by relatively large sea surface temperature (SST) anomalies in the eastern Pacific, and the other is the warm pool El Ni?o (a.k.a. ‘Central Pacific El Ni?o’ (CP El Ni?o) or ‘El Ni?o Modoki’), in which SST anomalies are confined to the central Pacific. Here the vertical structure variability of the periods during EP and CP is investigated based on the GFDL_CM2.1 model in order to explain the difference in equatorial wave dynamics and associated negative feedback mechanisms. It is shown that the mean stratification in the vicinity of the thermocline of the central Pacific is reduced during CP El Ni?o, which favours the contribution of the gravest baroclinic mode relatively to the higher-order slower baroclinic mode. Energetic Kelvin and first-meridional Rossby wave are evidenced during the CP El Ni?o with distinctive amplitude and propagating characteristics according to their vertical structure (mostly first and second baroclinic modes). In particular, the first baroclinic mode during CP El Ni?o is associated to the ocean basin mode and participates to the recharge process during the whole El Ni?o cycle, whereas the second baroclinic mode is mostly driving the discharge process through the delayed oscillator mechanism. This may explain that the phase transition from warm to neutral/cold conditions during the CP El Ni?o is delayed and/or disrupted compared to the EP El Ni?o. Our results have implications for the interpretation of the variability during periods of high CP El Ni?o occurrence like the last decade.  相似文献   

16.
A recently identified climate mode called Ningaloo Niño (Niña) is associated with positive (negative) sea surface temperature (SST) anomalies off the west coast of Australia and negative (positive) sea level pressure (SLP) anomalies in the overlying atmosphere. By conducting a series of numerical experiments with an atmospheric general circulation model, generation mechanisms of the atmospheric circulation anomalies accompanied by Ningaloo Niño/Niña are examined. Even when SST is allowed to vary interannually only in the eastern South Indian Ocean, negative (positive) SLP anomalies are formed off the west coast of Australia in Ningaloo Niño (Niña) years, supporting the existence of local ocean–atmosphere interaction. When the model is forced by SST anomalies outside of the eastern South Indian Ocean, negative (positive) SLP anomalies are also generated in Ningaloo Niño (Niña) years owing to a Matsuno–Gill type response to atmospheric convection anomalies in the tropical Pacific. It is found that the latter impact is stronger in the current atmospheric general circulation model. Regarding climatic impacts, it is shown that Ningaloo Niño (Niña) induces wet (dry) anomalies over the northwestern part of Australia even when SST anomalies outside of the eastern South Indian Ocean are excluded from the SST forcing.  相似文献   

17.
18.
Xin Wang  Chunzai Wang 《Climate Dynamics》2014,42(3-4):991-1005
Our early work (Wang and Wang in J Clim 26:1322–1338, 2013) separates El Niño Modoki events into El Niño Modoki I and II because they show different impacts on rainfall in southern China and typhoon landfall activity. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. El Niño Modoki I features a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II shows an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. The present paper investigates the influence of the various groups of El Niño events on the Indian Ocean Dipole (IOD). Similar to canonical El Niño, El Niño Modoki I is associated with a weakening of the Walker circulation in the Indo-Pacific region which decreases precipitation in the eastern tropical Indian Ocean and maritime continent and thus results in the surface easterly wind anomalies off Java-Sumatra. Under the Bjerknes feedback, the easterly wind anomalies induce cold SST anomalies off Java- Sumatra, and thus a positive IOD tends to occur in the Indian Ocean during canonical El Niño and El Niño Modoki I. However, El Niño Modoki II has an opposite impact on the Walker circulation, resulting in more precipitation and surface westerly wind anomalies off Java-Sumatra. Thus, El Niño Modoki II is favorable for the onset and development of a negative IOD on the frame of the Bjerknes feedback.  相似文献   

19.
Recent extensive studies have suggested that the occurrence of warm-pool El Niño has increased since the late 1970s and will increase in future climate. Occurrence frequencies of cold-tongue and warm-pool El Niño have been investigated in the observational record (1980–2006) and in the future 50 years (2007–2056) based on 100 synthetic SST datasets with estimates of statistical confidence. In the observational record, 80% of the warm-pool El Niño occurred since 1980 over a period of 27 years; only 20% of the warm-pool El Niño occurred prior to 1980 over a period of 110 years. The 100 synthetic datasets, on average, produce 142 months of cold-tongue El Niño in 2007–2056 as opposed to an average 107 months in the same length of the observational data; this is a 20.7% increase in the occurrence of cold-tongue El Niño compared with the observational period. Warm-pool El Niño occurred for 112 months in 2007–2056 as opposed to an average occurrence of 42 months in the observational record; this is 2.5 times the occurrence frequency in the 1980–2006 period in the synthetic datasets. As a result, occurrence frequencies of cold-tongue and warm-pool El Niño in the period of 2007–2056 become quite comparable to each other in the synthetic datasets. It is expected in the next 50 years that warm-pool El Niño will be nearly as frequent as cold-tongue El Niño.  相似文献   

20.
The composite analysis of the structure of anomalies of vertical motions revealed disturbances in the Walker and Hadley circulations in the whole tropical zone associated with the two types of El Niño. The Eastern Pacific El Niño is characterized by the suppressed convection over the Maritime Continent and by the intensification of ascending motions in the central and eastern Pacific. The Central Pacific El Niño is characterized by the double Walker circulation cell with ascending motions in the central Pacific and descending motions in the western and eastern Pacific. Significant differences in the pattern of vertical circulation anomalies outside the Pacific region are also found in the north and west of the Indian Ocean and in the area of South America and the Caribbean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号