首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper deals with the Sitnikov family of straight-line motions of the circular restricted three-body problem, viewed as generator of families of three-dimensional periodic orbits. We study the linear stability of the family, determine several new critical orbits at which families of three dimensional periodic orbits of the same or double period bifurcate and present an extensive numerical exploration of the bifurcating families. In the case of the same period bifurcations, 44 families are determined. All these families are computed for equal as well as for nearly equal primaries (μ = 0.5, μ = 0.4995). Some of the bifurcating families are determined for all values of the mass parameter μ for which they exist. Examples of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double period bifurcations are also given. These are the only families of three-dimensional periodic orbits presented in the paper which do not terminate with coplanar orbits and some of them contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist entirely of unstable orbits and terminate with coplanar orbits.  相似文献   

2.
We describe and comment the results of a numerical exploration on the evolution of the families of periodic orbits associated with homoclinic orbits emanating from the equilateral equilibria of the restricted three body problem for values of the mass ratio larger than μ 1. This exploration is, in some sense, a continuation of the work reported in Henrard [Celes. Mech. Dyn. Astr. 2002, 83, 291]. Indeed it shows how, for values of μ. larger than μ 1, the Trojan web described there is transformed into families of periodic orbits associated with homoclinic orbits. Also we describe how families of periodic orbits associated with homoclinic orbits can attach (or detach) themselves to (or from) the best known families of symmetric periodic orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We show that the procedure employed in the circular restricted problem, of tracing families of three-dimensional periodic orbits from vertical self-resonant orbits belonging to plane families, can also be applied in the elliptic problem. A method of determining series of vertical bifurcation orbits in the planar elliptic restricted problem is described, and one such series consisting of vertical-critical orbits (a v=+1) is given for the entire range (0,1/2) of the mass parameter . The initial segments of the families of three-dimensional orbits which bifurcate from two of the orbits belonging to this series are also given.  相似文献   

4.
We investigate the escape regions of a quartic potential and the main types of irregular periodic orbits. Because of the symmetry of the model the zero velocity curve consists of four summetric arcs forming four open channels around the lines y = ± x through which an orbit can escape. Four unstable Lyapunov periodic orbits bridge these openings.We have found an infinite sequence of families of periodic orbits which is the outer boundary of one of the escape regions and several infinite sequences of periodic orbits inside this region that tend to homoclinic and heteroclinic orbits. Some of these sequences of periodic orbits tend to homoclinic orbits starting perpendicularly and ending asymptotically at the x-axis. The other sequences tend to heteroclinic orbits which intersect the x-axis perpendicularly for x > 0 and make infinite oscillations almost parallel to each of the two Lyapunov orbits which correspond to x > 0 or x < 0.  相似文献   

5.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

6.
The existence of new equilibrium points is established in the restricted three-body problem with equal prolate primaries. These are located on the Z-axis above and below the inner Eulerian equilibrium point L 1 and give rise to a new type of straight-line periodic oscillations, different from the well known Sitnikov motions. Using the stability properties of these oscillations, bifurcation points are found at which new types of families of 3D periodic orbits branch out of the Z-axis consisting of orbits located entirely above or below the orbital plane of the primaries. Several of the bifurcating families are continued numerically and typical member orbits are illustrated.  相似文献   

7.
We study numerically the restricted five-body problem when some or all the primary bodies are sources of radiation. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points are given. We found that the number of the collinear equilibrium points of the problem depends on the mass parameter β and the radiation factors q i , i=0,…,3. The stability of the equilibrium points are also studied. Critical masses associated with the number of the equilibrium points and their stability are given. The network of the families of simple symmetric periodic orbits, vertical critical periodic solutions and the corresponding bifurcation three-dimensional families when the mass parameter β and the radiation factors q i vary are illustrated. Series, with respect to the mass (and to the radiation) parameter, of critical periodic orbits are calculated.  相似文献   

8.
When the Lagrangian points L4, LS in a rotating dynamical system become unstable (at a critical perturbation = ,) the characteristics of some families of orbits bifurcating from the short and long period orbits (SPO and LPO) become spiral. For a given e, slightly larger than e,, an infinity of families of multiplicities n, n + 1, n + 2, n. do not bifurcate any more from SPO or LPO but join each other into a spiral. As e increases this spiral is joined by lower multiplicity families, until the SPO-LPO family itself joins the spiral. Further spirals with the same or different focuses are formed by joining other sequences of families of order n, n + l, n + 2, n, or n, n + 2, n + 4, n... Other spirals are generated at particular values of , starting and terminating at the same focus or two different focuses. As the perturbation e increases such spiral characteristics join other families, away from the focus. The orbits along the spiral characteristics have an increasing number of loops (either n, n + 1, n + 2, ..., or n, n + 2, n + 4 n.) around, or close to L4. In the first case the loops are along the symmetry axis, passing through L 4. In the second case the loops appear in pairs outside the symmetry axis. The focuses correspond to homoclinic, or heteroclinic orbits, spiralling around L 4 and /or L 5.  相似文献   

9.
On closed but non-geometrically similar orbits   总被引:1,自引:1,他引:0  
As is well known, the existence of geometrically similar orbits for a particle moving under a central conservative force is a consequence of the fact that the corresponding potential energy is a homogeneous function of the co-ordinates. In this paper, we consider a particular non-homogeneous potential of the form V = U + W, where U and W are homogenous functions of degrees −1 and −2, respectively, because, for this potential, the search of closed orbits, for discrete values of the angular momentum, is straightforward. We focus our attention on these daisy-like charming orbits and graphically show the consequences of the impossibility of geometrical similarity.  相似文献   

10.
We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n-1), (3:1, 5:3, ...) and (3) all other resonances. The topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.  相似文献   

11.
We study the families of periodic orbits in a time-independent two-dimensional potential field symmetric with respect to both axes. By numerical calculations we find characteristic curves of several families of periodic orbits when the ratio of the unperturbed frequencies isA 1/2/B 1/2=2/1. There are two groups of characteristic curves: (a) The basic characteristic and the characteristics which bifurcate from it. (b) The characteristics which start from the boundary line and the axisx=0.  相似文献   

12.
The three families of three-dimensional periodic oscillations which include the infinitesimal periodic oscillations about the Lagrangian equilibrium pointsL 1,L 2 andL 3 are computed for the value =0.00095 (Sun-Jupiter case) of the mass parameter. From the first two vertically critical (|a v |=1) members of the familiesa, b andc, six families of periodic orbits in three dimensions are found to bifurcate. These families are presented here together with their stability characteristics. The orbits of the nine families computed are of all types of symmetryA, B andC. Finally, examples of bifurcations between families of three-dimensional periodic solutions of different type of symmetry are given.  相似文献   

13.
In this paper we study the asymptotic solutions of the (N+1)-body ring planar problem, N of which are finite and ν=N−1 are moving in circular orbits around their center of masses, while the Nth+1 body is infinitesimal. ν of the primaries have equal masses m and the Nth most-massive primary, with m 0=β m, is located at the origin of the system. We found the invariant unstable and stable manifolds around hyperbolic Lyapunov periodic orbits, which emanate from the collinear equilibrium points L 1 and L 2. We construct numerically, from the intersection points of the appropriate Poincaré cuts, homoclinic symmetric asymptotic orbits around these Lyapunov periodic orbits. There are families of symmetric simple-periodic orbits which contain as terminal points asymptotic orbits which intersect the x-axis perpendicularly and tend asymptotically to equilibrium points of the problem spiraling into (and out of) these points. All these families, for a fixed value of the mass parameter β=2, are found and presented. The eighteen (more geometrically simple) families and the corresponding eighteen terminating homo- and heteroclinic symmetric asymptotic orbits are illustrated. The stability of these families is computed and also presented.  相似文献   

14.
Families of asymmetric periodic orbits at the 2/1 resonance are computed for different mass ratios. The existence of the asymmetric families depends on the ratio of the planetary (or satellite) masses. As models we used the Io-Europa system of the satellites of Jupiter for the case m1>m2, the system HD82943 for the new masses, for the case m1=m2 and the same system HD82943 for the values of the masses m1<m2 given in previous work. In the case m1m2 there is a family of asymmetric orbits that bifurcates from a family of symmetric periodic orbits, but there exist also an asymmetric family that is independent of the symmetric families. In the case m1<m2 all the asymmetric families are independent from the symmetric families. In many cases the asymmetry, as measured by and by the mean anomaly M of the outer planet when the inner planet is at perihelion, is very large. The stability of these asymmetric families has been studied and it is found that there exist large regions in phase space where we have stable asymmetric librations. It is also shown that the asymmetry is a stabilizing factor. A shift from asymmetry to symmetry, other elements being the same, may destabilize the system.  相似文献   

15.
In this paper, we study circular orbits of the J 2 problem that are confined to constant-z planes. They correspond to fixed points of the dynamics in a meridian plane. It turns out that, in the case of a prolate body, such orbits can exist that are not equatorial and branch from the equatorial one through a saddle-center bifurcation. A closed-form parametrization of these branching solutions is given and the bifurcation is studied in detail. We show both theoretically and numerically that, close to the bifurcation point, quasi-periodic orbits are created, along with two families of reversible orbits that are homoclinic to each one of them.  相似文献   

16.
Four 3 : 1 resonant families of periodic orbits of the planar elliptic restricted three-body problem, in the Sun-Jupiter-asteroid system, have been computed. These families bifurcate from known families of the circular problem, which are also presented. Two of them, I c , II c bifurcate from the unstable region of the family of periodic orbits of the first kind (circular orbits of the asteroid) and are unstable and the other two, I e , II e , from the stable resonant 3 : 1 family of periodic orbits of the second kind (elliptic orbits of the asteroid). One of them is stable and the other is unstable. All the families of periodic orbits of the circular and the elliptic problem are compared with the corresponding fixed points of the averaged model used by several authors. The coincidence is good for the fixed points of the circular averaged model and the two families of the fixed points of the elliptic model corresponding to the families I c , II c , but is poor for the families I e , II e . A simple correction term to the averaged Hamiltonian of the elliptic model is proposed in this latter case, which makes the coincidence good. This, in fact, is equivalent to the construction of a new dynamical system, very close to the original one, which is simple and whose phase space has all the basic features of the elliptic restricted three-body problem.  相似文献   

17.
We study numerically the asymmetric periodic orbits which emanate from the triangular equilibrium points of the restricted three-body problem under the assumption that the angular velocity ω varies and for the Sun–Jupiter mass distribution. The symmetric periodic orbits emanating from the collinear Lagrangian point L 3, which are related to them, are also examined. The analytic determination of the initial conditions of the long- and short-period Trojan families around the equilibrium points, is given. The corresponding families were examined, for a combination of the mass ratio and the angular velocity (case of equal eigenfrequencies), and also for the critical value ω = 2
, at which the triangular equilibria disappear by coalescing with the inner collinear equilibrium point L 1. We also compute the horizontal and the vertical stability of these families for the angular velocity parameter ω under consideration. Series of horizontal–critical periodic orbits of the short-Trojan families with the angular velocity ω and the mass ratio μ as parameters, are given.  相似文献   

18.
We study the equilibrium points and the zero-velocity curves of Chermnykh’s problem when the angular velocity ω varies continuously and the value of the mass parameter is fixed. The planar symmetric simple-periodic orbits are determined numerically and they are presented for three values of the parameter ω. The stability of the periodic orbits of all the families is computed. Particularly, we explore the network of the families when the angular velocity has the critical value ω = 2√2 at which the triangular equilibria disappear by coalescing with the collinear equilibrium point L1. The analytic determination of the initial conditions of the family which emanate from the Lagrangian libration point L1 in this case, is given. Non-periodic orbits, as points on a surface of section, providing an outlook of the stability regions, chaotic and escape motions as well as multiple-periodic orbits, are also computed. Non-linear stability zones of the triangular Lagrangian points are computed numerically for the Earth–Moon and Sun–Jupiter mass distribution when the angular velocity varies.  相似文献   

19.
Three-dimensional periodic motions of three bodies are shown to exist in the infinitesimal neighbourhood of their collinear equilibrium configurations. These configurations and some characteristic quantities of the emanating three-dimensional periodic orbits are given for many values of the two mass parameters, =m 2/(m 1+m 2) andm 3, of the general three-body problem, under the assumption that the straight line containing the bodies at equilibrium rotates with unit angular velocity. The analysis of the small periodic orbits near the equilibrium configurations is carried out to second-order terms in the small quantities describing the deviation from plane motion but the analytical solution obtained for the horizontal components of the state vector is valid to third-order terms in those quantities. The families of three-dimensional periodic orbits emanating from two of the collinear equilibrium configurations are continued numerically to large orbits. These families are found to terminate at large vertical-critical orbits of the familym of retrograde periodic orbits ofm 3 around the primariesm 1 andm 2. The series of these termination orbits, formed when the value ofm 3 varies, are also given. The three-dimensional orbits are computed form 3=0.1.  相似文献   

20.
Intersections of families of three-dimensional periodic orbits which define bifurcation points are studied. The existence conditions for bifurcation points are discussed and an algorithm for the numerical continuation of such points is developed. Two sequences of bifurcation points are given concerning the family of periodic orbits which starts and terminates at the triangular equilibrium pointsL 4,L 5. On these sequences two trifurcation points are identified forµ = 0.124214 andµ = 0.399335. The caseµ = 0.5 is studied in particular and it is found that the space families originating at the equilibrium pointsL 2,L 3,L 4,L 5 terminate on the same planar orbitm 1v of the familym.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号