首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In Russia, until recently, it was considered that groundwater was protected from surface radioactive contamination by soil and rocks in the zone aeration. Groundwater was not a subject of radiation control. The accident at the Chernobyl Nuclear Power Plant showed, however, that groundwater is vulnerable to radioactive contamination. In this connection, the vulnerability of groundwater to and the problems of protecting groundwater from radioactive contamination became urgent. The assessment of natural protection of groundwater from radioactive contamination is now considered a top priority. The zone of aeration is generally considered to be the zone separating groundwater from surface contamination. In respect to radioactive contamination, soils that may fix a large quantity of radionuclides serve as a protection zone of a higher order. The mapping of protectibility was done for each radionuclide taking into consideration the specific structure of the flow medium and migration properties of a radionuclide.90Sr and137Cs have different mechanisms of transport; convective transport is characteristic of the former and diffusive transfer of the latter. This is conditioned by different physico-chemical properties of the radionuclides and principally by their sorption capacities. The coefficient of distribution of90Sr is in many times less than the coefficient of distribution of137Cs. The environmental protection problem in regions with nuclear power plants and in areas subjected to radioactive contamination may be solved using a monitoring, system including interrelated systems of observation and prediction of the lithosphere and the hydrosphere. The problem of mathematical modeling of migration processes is related to the complexities of modeling the processes of flow, mass transfer, and the accompanying physicochemical processes in zones of full and partial saturation, as well as difficulties in mathematical calculations.  相似文献   

3.
《Applied Geochemistry》1998,13(7):803-814
The Chernobyl radionuclides distribution and mobility in soils and uptake by plants have been studied in seminatural and agricultural moraine and in fluvioglacial landscapes typical for the areas of the Bryansk region affected by the accident.The major part of the Chernobyl 137Cs accumulated in the topsoil is insoluble in water, 40 to 93% of this radionuclide is strongly fixed by soil, while 70 to 90% of the 90Sr is present in water soluble, exchangeable and weak-acid soluble forms. Radionuclide vertical migration is most pronounced in local depressions with organic and gley soils in which both radionuclides are detected to the depth of 30–40 cm.In woodlands, most of the 137Cs is still fixed in litter and the upper mineral soil layer. The concentration peak in litter has moved to the lower AOF layer. Concentration in topsoil leads to high radionuclide uptake by forest species with shallow root systems (bilberry, mushrooms, fern). Contaminated forest products may contribute considerably to the internal irradiation doses of the local population. On flood plain grasslands traditionally used by local populations for haycrops and grazing, radionuclides are more strongly fixed in soils with fine texture. Radioisotope uptake by plants decreases in the order: legumes>herbs>grasses. Transfer to grasses in local depressions is usually higher compared with the dry levees. Observed exclusions are assumed to be due to comparatively low mobility of 137Cs and relatively high K content in soil. 137Cs accumulation in potato tubers grown on sandy soddy podzolic watershed soils mainly corresponds to its total amount in soils; uptake of 90Sr depends upon the percentage of its most mobile fraction.Pronounced relief is proved to cause different patterns in distribution and migration of radionuclides in soils and local food chains. The study showed it to be true for private farms situated in different landscape positions within the same settlement.The forest litter, topsoil and products, and flood plain pastures, especially localities in depressions are critical materials for the long-term radioecological monitoring of the contaminated landscapes of the study area and those of similar conditions. Population of the areas within the zone of contamination exceeding 15Ci/km2 (555kBq/m2) should be recommended to exclude local forest products from their diets and to avoid cattle grazing on wet flood plain meadows without remediation.  相似文献   

4.
Vertical profiles of 137Cs and 239,240Pu were measured in soils collected from two sites in southern Sweden and three sites in southern Poland and were modeled using both a solute transport model and a bioturbation model to better understand their downward migration. A time series of measured 137Cs profiles indicates that 137Cs from Chernobyl was found at the soil surface in 1986 but it has migrated progressively downward into the soil 4.5-25.5 cm since. However, because of dispersion during the migration and mixing following Chernobyl deposition and the much higher activities of 137Cs from Chernobyl, stratospheric fallout of 137Cs from the 1960s cannot be identified as a second 137Cs activity maximum lower in the soil column at any of the sites. Conversely, the 240Pu/239Pu ratio indicates that no Chernobyl-derived Pu is present in any of the cores with the exception of one sample in Sweden. This difference may be attributed to the nature of the release from Chernobyl. Cesium volatilized at the reactor temperature during the accident, and was released as a vapor whereas Pu was not volatile and was only released in the form of minute fuel particles that traveled regionally. Both the solute diffusion and the bioturbation models accurately simulate the downward migration of the radionuclides at some sites but poorly describe the distributions at other sites. The distribution coefficients required by the solute transport model are about 100 times lower than reported values from the literature indicating that even though the solute transport model can simulate the profile shapes, transport as a solute is not the primary mechanism governing the downward migration of either Cs or Pu. The bioturbation model uses reported values from the literature of the distribution coefficients and can simulate the downward migration because that model buries the fallout by placing soil from depth on top and mixing it slightly throughout the mixing zone (0.6-2% per year of mixing). However, mixing in that model predicts concentrations in the top parts of the soil profiles which are too high in many cases. Future progress at understanding the downward migration of radionuclides and other tracers will require a more comprehensive approach, combining solute transport with bioturbation and including other important soil processes.  相似文献   

5.
The convective transfer of 137Cs and 90Sr by groundwater on the territory of the Russian Research Centre Kurchatov Institute (RRCKI) was modeled. Geological data on the RRCKI site and possible sources of radionuclides show that the uppermost aquifer, composed of Quaternary sediments, is the most probable region of spreading of radioactive contamination. Since the lateral migration of radionuclides is predominant, a 2D horizontal model was used for the forecasting of spreading of radioactive contaminants in the subsurface medium. Transient or long-term repositories of radioactive materials at the RRCKI site (concentrated sources) and aquifer rocks contaminated in the course of removal of radionuclides from these repositories (distributed source) are responsible for groundwater pollution. The initial 137Cs and 90Sr distributions used in the forecasting of radionuclide migration were determined from their contents in core samples taken from wells drilled in contaminated areas of the RRCKI site. The zone of radionuclide migration is limited by poorly permeable moraine loam from below and by the water table from above. To determine the upper and lower boundaries, these surfaces were mapped in plan view. The data of meteorological observations over a long period were used to map the intensity of precipitation in the studied territory. The density of rocks in the uppermost aquifer and partition coefficients of radionuclides between rocks and groundwater were estimated from the data of laboratory examination of the core samples. The available data on the permeability of rock samples and the results of test pumping out of some wells were involved in the consideration. The results obtained and the data on the water table allowed us to define a gauge problem for determining the distribution of the filtration coefficient in the uppermost aquifer. This problem was solved taking the intensity of precipitation into account. The properties of the uppermost aquifer and the initial radionuclide distribution therein were used as initial data for modeling 137Cs and 90Sr migration on the territory of the RRCKI over 50 years.  相似文献   

6.
环境生态系统散落核素示踪研究新进展   总被引:13,自引:2,他引:13  
环境生态系统中的放射性核素既具有生态毒性,对生物和人体健康产生重要影响,又具有稳定的衰变函数和输入通量,对环境生态系统具有重要示踪价值。人类可利用放射性核素来认识环境生态系统:①环境生态系统中放射性核素的基准:放射性强度与环境生态系统之间的平衡关系;②环境生态系统中放射性核素的行为:在环境生态系统不同宿体和组分间的运移关系。考察放射性核素在生态系统不同环节中比活度的变化有助于认识环境生态过程生物地球化学作用的影响。    相似文献   

7.
This article represents the second of two articles, which review the main results of the international radioecological projects: Chernobyl Pilot Site Project (1999–2003) and Experimental Platform in Chernobyl (2004–2008). These projects studied radionuclide migration from the near-surface radioactive waste trench at the Red Forest waste dump in the Chernobyl zone, which contained nuclear fuel particles. This article presents results from the comprehensive hydrogeological site characterization program including the following issues: geological structure of the study site, hydraulic properties of the deposits, tracer tests in the aquifer, results of groundwater monitoring and unsaturated zone regime studies, as well as data on the 90Sr distribution in the unsaturated zone and aquifer, and analyses of 90Sr sorption behavior. The derived parameters were used to develop and calibrate 1D (flow tube) and 2D (cross-section) models describing the migration of 90Sr from the studied waste trench to the unsaturated zone and aquifer over a 16-a period (1986–2002). The models involved the following sub-models: (1) the geostatistical (structural) model for radioactivity distribution in the trench (using GSLIB); and (2) the radionuclide source term model (STERM1D) describing dissolution of fuel particles and a 1D of radionuclide redistribution in the trench body and unsaturated zone. The MODFLOW – MT3D codes were used to model the 2D 90Sr transport in the aquifer cross-section. Calibration of the 1D model with respect to Kds and dispersivities allowed quite accurate reproduction of 90Sr migration behavior for the early period (1995–1998). The less perfect fit between the 1D and 2D modeling results and monitoring data for the later period (1999–2002) suggests the need to improve the conceptual radionuclide migration model (i.e. to account for transient hydraulic and geochemical regimes of the waste site).  相似文献   

8.
Peak activities of radiocaesium (137Cs) in lake sediments have frequently been used to infer the ages of sediments deposited in the 1960s (137Cs derived from nuclear bomb testing) or in 1986 (Chernobyl derived 137Cs). Records of the vertical distribution of 137Cs in sediments can thus be used to provide accurate dates for a critical period in which palaeoecological reconstructions often overlap contemporary monitoring data. However, knowledge regarding how the distribution of 137Cs in sediments is affected by post‐depositional processes is limited to interpretations based on the 137Cs distribution in sediments sampled at a single given date. This study assesses the extent to which the 137Cs record in annually laminated (varved) lake sediments is affected by post‐depositional diffusion, using 11 archived sediment cores sampled between 1986 and 2007. The sediment record reveals how Chernobyl 137Cs incorporated into the 1986 varve diffused downwards in the core at a decreasing rate over time, whereas the surface sediments continued to receive inputs of 137Cs mobilized from the catchment soils or lake margin. In spite of these processes, all cores post‐dating the Chernobyl accident had a clear and well‐resolved peak in the 1986 varve, justifying the use of this feature as a fixed chronostratigraphic feature. Because of the very high levels of Chernobyl fallout at this site, downwards migration of Chernobyl 137Cs has, however, completely masked the nuclear weapons 137Cs fallout peak that had been clearly preserved in the 1964 varve of a pre‐Chernobyl core sampled just three weeks before the Chernobyl accident. In consequence, the weapons fallout marker is likely to be of little use for determining 137Cs dates in areas strongly affected by high levels of Chernobyl fallout.  相似文献   

9.
Unsaturated radionuclide migration experiments were conducted in a pit inside thetesting hall.Several types of radionuclides were used in the experiments.Tritium wasused as a tracer for water movement in unsaturated loess.Other kinds of radionuclideswere also used in order to obtain fundamental parameters for radionuclide migration sothat further environmental assessment of low—level radioactive waste disposal can be car-ried out.Mechanisms governing unsaturated flow in loess,that is,principles ofone—way lateral flow,are presented qualitatively in this paper.And a continuumone—dimensional model for radionuclide migration testing is developed based on the ex-periments conducted under the particular conditions at the test site.The data measuredfrom the tests were compared with solutions of this one—dimensional model.Resultsshow that this model is feasible for modeling radionuclide migration in unsaturatedloess.  相似文献   

10.
The moment magnitude (M w) 9.0 Tohoku-Oki Earthquake occurred on March 11, 2011, generating an unusually large tsunami. The seismic shocks and tsunami inundation severely damaged the Fukushima Daiichi Nuclear Power Plant. Radionuclide emission due to reactor breakdown contaminated wide areas of Fukushima and its surroundings. Heavy rainfall causes runoff across surface soil, and fine soil particles are susceptible to uptake by the flowing water. The high radioactivity of grains suspended in floodwater indicates that radioactive fallout was streamed into rivers in particulate form and transported downstream under high-flow conditions. Here, we investigated the diachronic mode of 134Cs and 137Cs in central Fukushima, through which the contaminated air mass drifted and caused wet deposition of radionuclides. Stratigraphic measurements of radioactivity in sediment cores is the method employed in this study to determine the basin-wide movement of 134Cs and 137Cs, to evaluate the significance of the erosion–transportation–accumulation processes on natural decontamination in terrain characterized by steep slopes and high precipitation. Stratigraphic results illustrate the process of fluvial sediment discharge, and the massive deposition of radiocaesium suggests basin-wide movement of fallout during concentrated rainfall. Grain suspension in torrential currents is an important pathway for transportation of radionuclides from land to sea, and the appearance of hotspots on floodplains and the offshore sea floor is the consequence of erosion and transportation under seasonal heavy precipitation. Radioactive horizons occur in offshore sediment columns and thus radiocaesium discharged from the estuary will persist forever under the sea floor if no artificial disturbance occurs.  相似文献   

11.
Various anthropogenic radionuclides and210Pb were analyzed in a 4.3-m-long core, sampled near the Rhône River mouth in March 1991, to evaluate the extent of industrial releases that accumulate in this area. The whole core was significantly marked by radionuclide inputs from the nuclear facilities located along the river (137Cs,134Cs,60Co). Irregular profiles in natural and artificial radionuclides should be related to variations in their respective inputs from the Rhône River to the Mediterranean Sea. Minimum concentrations were found during high flow periods. Using both the137Cs/134Cs profile in the core and the range of this ratio in Rhône waters, mean apparent accumulation rates were estimated to range between 37 cm yr?1 and 48 cm yr?1. This core would then represent a sedimentary record over a 7–10 year period. However, the presence of a signal from the Chernobyl accident, which occurred on April 26, 1986, was not clearly observed in the core. Inventories of both artificial and natural radionuclides were greater than expected from atmospheric inputs. The increased sedimentation occurring in close vicinity to the mouth of the Rhône River is thus responsible for trapping of elements transported by the river to the Mediterranean Sea. In this area, inventories of artificial radionuclides are well in excess of aerial deposition from Chernobyl and atmospheric weapons tests and are linked primarily to industrial releases.  相似文献   

12.
Field experiments and laboratory studies were performed to investigate migration processes of plutonium isotopes from a near-surface radioactive waste trench to the underlying sandy aquifer at the Red Forest waste dump in the Chernobyl zone. The objectives of these experiments were to characterize the spatial distribution and possible migration mechanisms of plutonium in the aquifer. During 2002–2007 experimental investigations were carried out and spatial distributions of plutonium isotopes (239,240Pu, 238Pu), 90Sr and major ions in the aquifer in the direction of the groundwater flow were obtained. Specific activities of radionuclides in groundwater depended on the location of the piezometer and varied in the range of 1–360 mBq kg−1 for 239,240Pu, 0.5–180 mBq kg−1 for 238Pu and n–n·104 Bq kg−1 for 90Sr. It was found that the spatial features of the distributions of plutonium and strontium specific activities in the upper eolian aquifer were similar, i.e. there was a correlation between the positions of the activity maxima of the radionuclides. The Pu isotopes plume in the aquifer spreads about 15 m downstream of the radionuclides source. Characterization of the initial radionuclide composition of the waste showed that all plutonium in the aquifer originated from the trench. The ratio of plutonium isotopes (239,240Pu/238Pu) at the sampling time was the same in waste material and in groundwater samples. In situ ultrafiltration of several groundwater samples was carried out. The size fractionation data obtained suggest that a significant part of plutonium (50–98%) in the groundwater sampled close to the source from the upper part of the aquifer is associated with a very low molecular weight fraction (<1 kDa).  相似文献   

13.
Drinkable waters in Bryansk oblast are generally poor in I and Se. Possible I and Se speciation in the drinkable waters and their means of migration and concentration in soils at geochemically contrasting conditions are analyzed, and the possible reason for the high mobility of I is demonstrated to be predetermined not only by its occurrence in the form of iodide and organic complexes but also by solute mineral species (CaI+ and MgI+), with the former and the latter types of the complexes spread more widely in the polessky and opolny landscape types, respectively. Iodine complexation with alkali-earth cations under reduced neutral-weakly alkaline conditions facilitates, on the one hand, vertical iodine migration and, on the other hand, its precipitation on the carbonate barrier. The predominant solute species of Se in these environments is hydroselenide, which can form FeSe in the presence of significant Fe concentrations and be precipitated on the reduced barrier in soils of hydromorphic landscapes. The generally low total I and Se concentrations in the drinkable waters and the migration of solute compounds of radioactive I in the form of organic and inorganic complexes could likely result in a higher thyroid morbidity rate over the whole territory of Bryansk oblast, including areas contaminated with radioactive I isotopes after the accident at the Chernobyl nuclear power plant.  相似文献   

14.
Pb-210, Cs-137 and Pu-239,240 sediment-depth profiles in an anoxic, unbioturbated, estuarine depositional regime at the head of the Saguenay Fjord, Que. exhibit a seasonally-modulated component caused by pulsed inputs of silts and sands during high energy, spring river discharge events superimposed on an ambient depositional pattern of finer grained clays and organic matter. A precise sediment timestratigraphy has been determined by the inverse correlation of the Pb-210 activity with the rate of river discharge during the period, 1963–1976. The historical record of Cs-137 and Pu-239,240 sediment fluxes has been reconstructed through the normalization of fallout radionuclide activities to the excess Pb-210 activity profile. Radionuclide flux geochronologies have been interpreted on the basis of a fluvial-marine transport model which distinguishes between inputs due to direct adsorption of radionuclides onto particles in the water column and inputs resulting from the erosion of particle-associated radionuclides from the drainage basin. Rate constants corresponding to residence times of one year for Cs-137 and Pu-239,240 in the water column and 1500 years for each radionuclide in the drainage basin provide reasonable agreement between the model and experimental results, although there is some evidence for a slightly longer drainage basin residence time for plutonium. Both the threshold for the initial appearance of Pu-238, derived from the atmospheric burnup of a SNAP-9A satellite reactor in 1964, and the magnitude of its isotopic dilution by drainage basin inputs of Pu-239,240 are also in agreement with model predictions.  相似文献   

15.
Iron and Mn oxides and associated radionuclides in soils and sediments from the radioactive waste burial grounds at Oak Ridge National Laboratory have been selectively extracted using wet chemical techniques. Product-moment-correlation analyses have demonstrated that 60Co and various actinides, principally 244Cm, 241Am and 238Pu are dominantly associated with Mn oxides. Correlation coefficients between these radionuclides and Fe oxides and organic C are generally very low. The important role of Mn oxides in radionuclide adsorption is attributed to their unique surface and colloidal properties. The data illustrate the importance of the Mn oxide component of soils and sediments in controlling transition metal and actinide solubility.These results suggest two major implications for the disposal of radioactive waste. First, in order to minimize future 60Co and actinide mobilization from disposal sites, a chemical environment in which Mn oxides are least soluble should be maintained. Second, the liberal use of Mn oxides in waste management operations might improve long-term retention of these radionuclides. Deep-sea Mn modules, which may in the future be mined for their trace metal contents, could serve as a ready supply of Mn oxide for waste disposal applications.  相似文献   

16.
Anthropogenic radionuclides (137Cs,134Cs,60Co) have been introduced to the James River estuary as a result of low-level releases from the Surry Reactor site since 1973 and worldwide atmospheric fallout from nuclear weapons tests since the early 1950s The total radionuclide burden in the estuary sediments has been estimated by integrating radionuclide activities in 29 box cores and extrapolating these integrated values over surface areas subdivided on the basis of sediment type, rates of accumulation, and proximity to the reactor release site. Our results indicate that 30% of the60Co, but only 15% of the134Cs released from the reactor site, has been retained in the estuary sediments, and about 40% of the134Cs and60Co sediment inventory is in areas that represent less than 5% of the total estuarine surface area. Depletion of the134Cs in downstream sediments forms a noticeable trend in the James River estuary, and we postulate that seawater cation competition and exchange is primarily responsible.  相似文献   

17.
Predicting the long-term safety and performance of a repository for intermediate- to high-level radioactive wastes requires the evaluation of various scenarios which may influence the integrity of the repository system. One such scenario, radionuclide transport, is described, and some of the geochemical processes which serve to enhance or retard transport are illustrated with examples selected from natural analogue or natural system studies. These studies, as distinct from laboratory simulations, help considerably in understanding how near- and far-field radionuclide transport mechanisms work over geological timescales (thousands to hundreds of thousands of years), more in line with the anticipated lifespan of a repository.

Processes addressed include: stability of the spent fuel UO2 matrix; bentonite backfill as a barrier to radionuclide diffusion; retention of radionuclides by absorption on fracture minerals; transport and diffusion of radionuclides controlled by interconnected bedrock porosity; geochemical influence and behaviour of repository construction materials on radionuclide transport.  相似文献   


18.
《Applied Geochemistry》1994,9(5):479-490
Natural radionuclide migration in Miocene sedimentary rocks has been studied at the Tono U deposit in Japan, which is a potentially useful analogue of radioactive waste isolation in geological environments.Uranium series disequilibrium studies have revealed that natural radionuclides have been redistributed during the past 3.5 × 105 a in the U-mineralized zone. Permeability tests using core samples of the U-mineralized zone have shown that the microfabrics of sedimentary rocks, such as the connectivity of pores which control the groundwater movement, directly influence the redistribution of nuclides.Detailed observations using cathodoluminescence (CL) and electron probe microanalysis (EPMA) were carried out after a dye-impregnation test in order to improve the understanding of the importance of microfabrics in relation to nuclide migration. Results of the observations show that U has migrated within detrital grains, such as biotite and quartz, as well as between these grains. Uranium-series disequilibrium studies of each detrital quartz and biotite grain have been shown that these detrital minerals behave differently in respect of the migration of U, owing to their different textural properties. The detrital biotite flakes, especially along the (001)-cleavage planes, appear to have fixed U for a long period of time, whereas the U has remained mobile within the microfractures in detrital quartz grains.  相似文献   

19.
The principal aspects of reconstruction of conditions and paths of fluid migration in massifs of crystalline rocks are considered. The spatiotemporal relationships between stress fields, brittle failure, and migration of radionuclides are discussed. The main attention is focused on the staged character of tectonic events, fluid circulation conditions, and the sequence of uranium mineral formation as determined with structural, geological, tectonophysical, petrophysical, petrographic, mineralogical and geochemical, microstructural, microthermometric, and radiographic methods. As is exemplified in uranium deposits and massifs of silicic igneous rocks, the comprehensive consideration of the tectonodynamics of fluid-conducting structural elements and radionuclide migration is necessary for providing insights into the localization and redistribution of uranium, the PT conditions of uranium ore formation, and the forecast for long-term safety of disposal of radioactive wastes in crystalline rocks.  相似文献   

20.
将铀尾矿库核素迁移问题概括为均质多孔介质中稳定的二维水流条件下的三维溶质迁移问题,利用Visual Modflow软件(MT3D)采用全隐式差分法对某铀尾矿库放射性核素迁移进行了模拟研究,模拟值结果与浓度实测值较吻合,揭示了尾矿库放射性核素时空迁移规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号